
436 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGUST 2014

Performance Optimization of Parallel Algorithms
Martin Húdik and Michal Hodoň

Abstract: The high intensity of research and modeling in fields of
mathematics, physics, biology and chemistry requires new com-
puting resources. For the big computational complexity of such
tasks computing time is large and costly. The most efficient way
to increase efficiency is to adopt parallel principles. Purpose of
this paper is to present the issue of parallel computing withem-
phasis on the analysis of parallel systems, the impact of commu-
nication delays on their efficiency and on overall executiontime.
Paper focuses is on finite algorithms for solving systems of lin-
ear equations, namely the matrix manipulation (Gauss elimina-
tion method, GEM). Algorithms are designed for architectures
with shared memory (open multiprocessing, openMP), distributed-
memory (message passing interface, MPI) and for their combina-
tion (MPI + openMP). The properties of the algorithms were an-
alytically determined and they were experimentally verified. The
conclusions are drawn for theory and practice.

Index Terms: Collective communication operations, efficiency,
Gauss elimination method, modeling, parallel algorithms,par-
allel architecture, parallel computation, performance prediction,
pipelined broadcast, system of linear equations.

I. INTRODUCTION

The high research intensity in fields of mathematics, physics,
biology and chemistry, requires new powerful computing re-
sources. For the large computational complexity of specifictasks
computing, e.g., [14] in intelligent buildings automationor [12]
in multirobot systems, the time is long and costly. The deploy-
ment of parallel principles proves to be the most effective solu-
tions. The parallel principles open up new possibilities ofhar-
vesting computer processing power. The use of parallel systems
brings new complex problems that must be addressed to achieve
the desired increase in performance either in classic high perfor-
mance computing (HPC) solutions or in specific low-cost em-
bedded solutions, e.g., FPGA [15]. The ongoing transition to
the parallel principles is already supported by hardware such
as multi-processor, multi-core technology, symmetric multipro-
cessing (SMP) and also software such as message passing in-
terface (MPI), open multiprocessing (OpenMP), parallel virtual
machine (PVM), Java, C#, Intel TBB. Increasing throughput of
interconnection networks helps development of parallel technol-
ogy (Myrinet, Infiniband, giga ethernet, 10 gigabit ethernet, fi-
bre channel).

The computer hardware is evolving fast. For good utilization
of the new hardware also the software platform need to evolve.
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There are lot of software tools that the developer can choose
from, but the question is which of them to pick for the best per-
formance on a given hardware platform. The next parts of this
paper discuss analytical approach to performance evaluation of
parallel algorithm (PA) and analysis of PA for solving the system
of linear equation is conducted on different hardware platform
and software tools.

II. ANALYSIS OF PARALLEL COMPUTERS

Computer architects have always seek to improve the perfor-
mance of computer architectures. High performance can come
from fast integrated circuits with high density of integration or
using the parallel principles. The trend of single processor super
computer ended, because of the physical boundaries that limit
the computing power of single processor system. This paper is
devoted to modern computer architectures, parallel environment
using multiple computing nodes (processors, cores, computers).

A. Parallel Computers

Today trends in the world have been heading towards a sub-
stitution of conventional supercomputers with group of inter-
connected, highly specialized computers (clusters) or power-
ful workstations (NOW) [3]. The reason for the enlargement of
clusters in the world is in particular their universality, mutual in-
dependence, price and scalability according to current requests
of users. The main disadvantages are the complex management
and lack of shared memory. Parallel systems achieve higher per-
formance, but their high cost prevents them from wider dissem-
ination.

The trends in recent years were symmetric multi-processor
systems, the number of the processor architecture for SMP
steadily increased. Multi-core CPUs as well as multicellular
(cell) processors are currently starting to dominate [1], [16]. An
example is TeraScale processor, which achieves performance
among teraflops and the number of cores in the future will be
in the order of hundreds. The main advantage of multi-core pro-
cessors, in addition to increased performance, is a significant re-
duction in processor consumption and therefore more econom-
ical operation of computer. Another example of increasing in-
fluence of multi-core technology is new coprocessor card from
Intel called Xeon Phi. The Intel Xeon Phi coprocessor consists
of up to 61 cores connected by a high performance on-die bidi-
rectional interconnect. The coprocessor runs a Linux operating
system and supports all important Intel development tools,like
C/C++ and Fortran compiler, MPI and OpenMP, high perfor-
mance libraries like MKL, debugger and tracing tools like In-
tel VTune Amplifier XE. Traditional UNIX tools on the copro-
cessor are supported via BusyBox, which combines tiny ver-
sions of many common UNIX utilities into a single small exe-
cutable [10].

In last decade the Grid has starts to emerge as an alternative

1229-2370/14/$10.00c© 2014 KICS
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of distributed parallel computers [11]. It represents an easily ex-
pandable architecture of a parallel computer that can include
any device capable of communication [4] e.g., SMP computers,
computers with Intel Xeon Phi coprocessor card or with GPUs,
etc.

III. MODEL OF COMMUNICATION COST IN
COMPUTERS WITH DISTRIBUTED MEMORY

The total time required to move a message consists of the
following partial times:
• ts – Starting time - the time required for processing / prepara-
tion of message on the receiver and transmitter
• th – Per-hop time – time required to move a message between
two neighbouring nodes
• tw – Per-word transmit time – the bandwidth of the transmis-
sion channel isr words per second, so the time to transfer one
word is the inverse of thetw = 1/r.

tcomm = lth +mtw + ts. (1)

This equation represents the cost model for communication
sending messages of sizem between the nodes distantl jumps.
Since in most systems the number of hopsl is small, we ignored
l th (per-hop) time. The resulting time of communication “point
to point” is then

tcomm = mtw + ts. (2)

IV. MODEL OF COMMUNICATION COST IN
COMPUTERS WITH SHARED MEMORY

Estimate the cost of communications for computers with
shared memory is much more complex. Many variables need to
be taking into account to produce a comprehensive communica-
tion model. Such a model would be very specific and dependent
on particular computer architecture, and would not be generally
applicable [13].

In a simplified model, all the delays associated with memory
operations, network and other delays is added tots constant.
The ts constant is related to first access time to the coherent
shared data the size ofm words. Furthermore, we assume that
access to shared data is more time-consuming as access to lo-
cal data and therefore time access to one wordtw is assigned to
shared data access. From the previous implies that for the sim-
plified model we can write the equation:

tcomm = mtw + ts. (3)

This equation is identical to the (2) describing a simplifiedcost
model for computers with distributed memory. Constantsts and
tw are for the model describing computers with shared memory
much smaller.

V. PERFORMANCE EVALUATION

A. Classic Metrics

A.1 Parallel Cost

Let T (s, p) represents a parallel algorithm for solvingp pro-
cessors (s defines the size of the problem). Then the price of this

parallel algorithm can be defined as

C(s) = pT (s, p). (4)

C(s) represents the total work done by all processors involved
in the calculation. Parallel program is called cost optional if
C(s) = T (s, 1), i.e., when the total number of operations per-
formed is same as for a fastest sequential algorithm, whose com-
putation time isT (s, 1).

B. Specialized

B.1 Parallel Speed-Up

LetO(s, p) is the total number of operations carried out by the
p-processor system for application of sizes, T (s, p) is the time
to perform the parallel task. In general,T (s, p) < O(s, p) if
p ≥ 2. We assumeT (s, 1) = O(s, 1) for a single processor sys-
tem (classical sequential system). Parallel acceleration(speed-
up) is then defined as

S(s, p) =
T (s, 1)

T (s, p)
. (5)

B.2 Efficiency

Efficiency of the system for thep-processor system is defined
as

E(s, p) =
S(s, p)

p
=

T (s, 1)

pT (s, p)
. (6)

VI. PARALLEL ALGORITHMS

A. Shared Memory

In parallel algorithms versus sequential algorithm is neces-
sary for parallel access to shared data to use control mechanisms
that cause additional delays. In modelling the performanceof
parallel algorithms for classical parallel systems with shared
memory, these overheads neglected because it is assumed that in
comparison with the workload of the calculation they are con-
siderably lower [5]. Therefore, for the parallel algorithms for
shared memory architecture, the time complexity is reducedto
computation complexity. Interpreting this assumption in relation
to the asymptotic function means:

ω(s) = max[computation, h(s, p) < computation]

= O(computation)
(7)

whereω is a workload andh is a delay.

B. Distributed Memory

Distributed PA (DPA) for existing parallel computers based
NOW, SMP, and Grid requires for performance modelling a
complex analysis of all relevant components for modelling per-
formance [9]:
• The impact of parallel system architecture,
• the impact of inter-process communication (IPC),
• communication initialization (start-up time),
• data transfer,
• switching (transmission through more communication nodes),
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Fig. 1. All-to-one and one-to-all.
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Fig. 2. One-to-all communication on the hypercube.

• and computation itself.
As a result of these effects the analyse of the total delay is

T (s, p) = Tcomp + Tpar + Tinteract (8)

whereT comp, T par, andT interact give the individual delay to
perform the computation, overhead for parallelism and commu-
nication overhead.

B.1 Collective Communication: One-to-All (broadcast) and
All-to-One Reduction

Parallel algorithm often needs to send identical data to allpro-
cesses or a subset of processes. This operation is called a broad-
cast.

For one-to-all broadcast only one process has data of size of
m, which will be distributed. At the end of the operation there
will be p copies of the original data, which were sent to each pro-
cess. The opposite operation is called an all-to-one reduction.
In all-to-one reductions eachp contributing process comprises a
buffer containingM data with the size ofm. Data from all pro-
cesses are combined through associative operation and subse-
quently accumulated in the target process. This communication
method is used for example to find the maximum, minimum,
sum, etc.

Algorithm: The basic broadcast algorithm uses method of
recursive doubling. When recursive doubling starts the process
sends a message to one process and on the next step both pro-
cess sends a message to another process. At each step doubles
the number of message senders. To complete the broadcast it is
necessary to donelog2p steps.

Hypercube: We imagine hypercube as extended mesh net-
work in d dimensions. Algorithms used for the mesh can be
applied and used consecutively for each dimension of the hy-
percube. Communication begins at node 0.

B.1.a Evaluation. Table 1 provides an overview of commu-
nication operations and time requirements for the hypercube

communication structure. Hypercube is one of the best possi-
ble communication links, but in practice is often not realized.
When building a financially less demanding parallel systems
like NOW most commonly used is interconnected interconnec-
tion (linear list).

VII. THE SYSTEM OF LINEAR EQUATIONS

Consider a system of linear equations (SLQ) [2] in the form:

a0,0x0 + a0,1x1 + · · ·+ a0,n−1xn−1 = b0,

a1,0x0 + a1,1x1 + · · ·+ a1,n−1xn−1 = b1,

an−1,0x0 + an−1,1x1 + · · ·+ an−1,n−1xn−1 = bn. (9)

In matrix notation given system can be written as

A x = b (10)

whereA is matrix of coefficients,b is vector of right side andx
is vector of unknowns. Trying to solve it means to find all solu-
tions of this system. The solution for system of linear equations
9 means to find the vectorr = (r1, r2, · · ·, rn)

T for which ap-
plies A×r = b. To calculate the system of linear equations
there are many methods that are divided into two basic groups;
finite methods and iterative methods [8].
• Direct methods (finite),
• Cramer’s rule,
• elimination methods,
– Gauss elimination,
– Gauss-Jordan elimination,

• other (LU decomposition),
• and iterative methods [7].

VIII. PARALLEL ALGORITHMS GEM

For solving the system of linear equation we choose a sim-
ple gauss elimination method (GEM), because of its easy imple-
mentation and it is a good algorithm for analysis communication
impact on overall performance.

Finding solutions to systems of linear equations is divided
into two parts – the matrix transformation and the calculation of
unknowns [6]. We will discuss only part of the matrix transfor-
mation, because it has a dominant influence on the performance
of the algorithm.

A. Parallelization above the Shared Memory

Algorithm working over the shared memory works with a
whole matrix of coefficientsn × n. Number of processes are
created, each of which operates only over their common matrix
(block of rows). GEM steps are shown in Fig. 3. The first pro-
cess calculates and synchronizes the remaining processes.Us-
ing synchronization superior process announces that it carried
out the calculation and stored data are valid. After the synchro-
nization processes load row from memory of superior process
and carry out the elimination and computation. Next in order
of overarching process synchronizes other processes and soit
continued until complete elimination of matrix is done.
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Table 1. Overview of time complexity for individual collective communication methods.

Comunication operation Time
One-to-all broadcast, all-to-one reduction min[(ts + twm)log2p, 2(tslog2p+ twm)]
All-to-all broadcast, all-to-all reduction ts log2p+ twm(p− 1)

All-reduce min[(ts + twm) log2p, 2(ts log2p+ twm)]
Scatter, gather tslog2p+ twm(p− 1)

All-to-all personalized (ts + twm)(p− 1)

Data retrieval Data retrieval Data retrieval

Fig. 3. GEM parallel algorithm above the shared memory.

A.1 Total Execution Time

In determining the total execution time of the parallel al-
gorithm over the shared memory, the analysis of computa-
tional complexity is limited to the computation itself. Com-
munication part can be neglected, given the fast communica-
tion link with the memory. Parallel complexity is derive as fol-
lows: Parallel Gaussian elimination performed approximately
1
p

∑n−1

j=1

∑n−1

k=j 1 = −n+n2

2p
dividing and approximately

1
p

∑n

i=1

∑n

j=i

∑n

k=i 2 = n+3n2+2n3

3p

subtraction and multiplication. For simplicity, we assumethat
all arithmetic operations are performed in a unit time. Compu-
tational complexity can then be written as

T (s, p)comp = tc

(

−n+ n2

2p
+

n+ 3n2 + 2n3

3p

)

(11)

where the constanttc represents average execution time of a sin-
gle operation.

B. Parallelization over Distributed Memory

When designing parallel algorithm from sequential algorithm,
it is important to choose the right decomposition strategy.Fur-
thermore, it is important to choose the preferred model of com-
munication. Communication takes place either synchronously
or asynchronously. Because the synchronous communicationis
ineffective, in this paper we only analysis the asynchronous ver-
sion of GEM algorithm.

B.1 Synchronous Implementation

For simplicity, row cyclic decomposition is selected. Each
computing node is cyclically assigned with row of matrix coef-
ficientsA andb vector elements of right sides. Thus, the entire
matrixA of sizen× n and vectorb of sizen are divided among
p processes, each process is assignedn/p rows

The GEM parallel algorithm based on the sequential version
is complemented with a communication section, that is designed
to send the currently processed row to the remaining processes
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Fig. 4. Graphical representation of a cyclic decomposition.

Fig. 5. Synchronous parallel implementation of GEM.

that are using it to carry out their part of the elimination ofthe
matrix.

B.2 Analysis of the Parallel Algorithm

The total execution time of a parallel algorithm is the sum of
the communication complexity and computational complexity

T (s, p)par = tc

(

−n+ n2

2p
+

n+ 3n2 + 2n3

3p

)

+
1

2
n(2ts + tw + ntw)log2p .

(12)

B.3 Modification of Broadcast Communication Algorithm to
Improve the Synchronous Version of GEM Algorithm for
Implementation in a Multiprocessor Environment

The modern trend of SMP computers withn-integrated com-
puting cores is the future of parallel systems. Today’s multi-core
workstations typically contain 4, 8, 16 and more compute cores.
For efficient use of GRID, NOW or parallel computers, consist-
ing of such a SMP computers, need to adapt existing software
tools to take into account the characteristics of a such system.

From the perspective of optimization GEM synchronous al-
gorithm it should focus on effective inter-process communica-
tion, which is one of the main limiting factors.

Based on the domain parting Fig. 7 we can split communica-
tion on inter-node communication (main domain) and intra-node
communication (sub-domain).
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Fig. 6. Flowchart of the parallel algorithm GEM with an indication of
computing and communication complexity.

Fig. 7. Division of the communication domain on the sub-domains.

For the time analysis of algorithm, we start from Fig. 8, it
is clear that sending one message to all recipients happens in
three steps, which are performed sequentially. The first step and
the third step represent internal communication, which is de-
rived from point-to-point communication. The second step rep-

Fig. 8. The steps of proposed sub-domain broadcast communication
algorithm.

resents inter-node communication in the main domain and the
time complexity is derived from the broadcast algorithm de-
scribed in the previous sections. At the beginning we what to
send message of sizem to (p× j) process, wherep is the num-
ber of SMP computers with multiple cores (processors) andj is
the number of those cores (processors).

Total time to deliver single message from one process to other
is the sum of all partial times and applies

T = T1 + T2 + T3

= (tsc + twcm) (n)+(ts + twm)log2p + (tsc + twcm)(n)

= 2(tsc + twcm) (n)+(ts + twm)log2p . (13)

Assuming that the communication inside the computer (node)
is of the order faster than communication between computers
(nodes), i.e.,tsc ≪ ts andtwc ≪ tw, the resulting equation is
simplified only on the transmission of messages between com-
puters (nodes) in the main domain.

T = (ts + twm)log2p (14)

from this assumption the following equation is valid for thetime
complexity of the GEM synchronous parallel algorithm:

T (s, p)par = tc

(

−n+ n2

2p
+

n+ 3n2 + 2n3

3p

)

+
1

2
n(2ts + tw + ntw)log2psmp

(15)

wherep is the total number of processors (cores) parallel sys-
tem andpsmp the actual number of SMP computers forming a
parallel computer.

B.4 Asynchronous Implementation

With asynchronous GEM each process independently carries
out operations until the whole algorithm performed alln itera-
tions needed to transform matrix A on the upper triangular ma-
trix. Processes carried out one of following steps:
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Communication/Elimination P2P Communication

Fig. 9. Asynchronous parallel implementation of GEM.

p

Fig. 10. Computers arranged in a threaded linear tree.

1. If the process has some data to send, then sends them to a
particular process.

2. If the process has appropriate data to calculate then he carries
out the calculation.

3. In other cases, the process is waiting to receive data in order
to perform the previous two steps.

Such realized algorithm (see Fig. 9) is optimal with regard to the
sequential equivalent. To implement this algorithm we use non-
blocking communication methods and processes are logically
arranged in a linear linked list. Communication is carried out in
a manner similar one-to-all on a pipelined linear list. Someim-
plementations of MPI provide non-blocking MPI collective op-
erations. In that case, implement one-to-all (broadcast) method
can be used.

C. Modification of Broadcast Communication Algorithm for
Transforming the Synchronous Version of GEM Algorithm
to the Asynchronous Version

The time complexity analysis shows that sending one mes-
sage to all recipients happens in three steps, which are per-
formed sequentially. At the beginning the message of sizeM
is send top× n processes, (wherep is the number of SMP com-
puters with multiple cores (processors) andn is the number of
such cores (processors)). For modelling point-to-point commu-
nications between computers (nodes) we use (2) and for com-
munication between the cores (CPUs) within a single computer
(node) we use (3). Then, for step 1 and step 2 is valid equation

T1 = T2 = (tsc + twcM)(n). (16)

This equation describes the sequential sending one message
to all processes within a single computer (node). Computers
(nodes) communicating in step 2, are logically arranged in a
threaded linear tree as shown in Fig. 10. The message is divided
into smaller parts (packets) that are sent sequentially through a
liner pipeline. For time complexity analysis of the algorithm the
algorithm is divide into two steps. The first step is sent partof
the message (packet) through linear tree until it reaches the last
node. This step is called filling the linear tree and it’s shown in
Fig. 11, wherep is the number of communicating processes, and

Fig. 11. Filling the linear tree.

Fig. 12. Sending a message through a pipelined linear tree.

m is the size of the packet. After filling the linear tree the rest of
the message go through the whole tree to the last node, as shown
in Fig. 12, whereX is the number of packets for which the mes-
sage of sizeM divided and the size per packet, i.e.,X = M/m.
At the end of this process, all nodes have a copy of the message.

The total transmission time broadcast algorithm using linear
tree is the sum of the time needed for the initial tree filling and
the time to send a remaining packets

T2 = (p− 1)(ts + twm) + (X − 1)(twm). (17)

The total time for sending one message from one process to
all processes is given by the sum of partial times

T = T1 + T2 + T3

T = (tsc + twcM) (n) + (p− 1)(ts + twm) + (X − 1)(twm)

+ (tsc + twcM) (n)T

= 2(tsc + twcM) (n) + (p− 1)(ts + twm) + (X − 1)(twm).

(18)

Assuming that the communication inside the computer (node)
is of the order faster than communication between computers
(nodes), i.e.,tsc ≪ ts andtwc ≪ tw, the resulting equation is
simplified only for the transmission of messages between com-
puters (nodes) in the main domain

T = (p− 1)(ts + twm) + (X − 1)(twm). (19)

D. Analysis of GEM Asynchronous Algorithm

D.1 Computational Complexity

Computational complexity is the same computational com-
plexity of algorithm for architectures with shared memory and



442 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGUST 2014

Fig. 13. Sending a message to the following process.

is given by (11).

D.2 Communication Complexity

With asynchronous GEM each process independently con-
duct operations until the whole algorithm performed all n it-
erations needed to transform matrix A to an upper triangular
matrix. This means that after each elimination communication
occurs, at which the calculated row is sent to the following pro-
cess and the further processes. Processes are arranged in a row
in a linear fashion. When communicating with use of pipelined
broadcast algorithm the time to send a message to the next pro-
cess is derived from the Fig. 13.

The total transmission time is the sum of the time needed for
the initial linear tree filling and the time to transmission the re-
maining packets.

T = (p− 1)(ts + twm) + (X − 1)(twm), (20)

T = (ts + twn). (21)

Due to the pipeline character of computation and communica-
tion the total time of communication simplifies only to a data
transfer to a nearest neighbor. In each iteration the amountof
data to be transferred is reduced.

T (s, p)comm =

n−1
∑

i=0

(ts + tw (n− i)) = nts +
ntw
2

+
n2tw
2

.

(22)

D.3 Execution Time

The total execution time of a parallel algorithm is the sum of
the communication complexity and computational complexity

T (s, p)par = tc

(

−n+ n2

2p
+

n+ 3n2 + 2n3

3p

)

+ nts +
ntw
2

+
n2tw
2

. (23)

E. The Hybrid Algorithm

This algorithm works over a distributed shared memory. This
combination emerged from use of technology for communica-
tion using MPI messaging and communication via shared mem-
ory OpenMP. When designing the algorithm we modified an

Fig. 14. Measurement methodology.

asynchronous version of GEM algorithm of distributed memory.
Modification of the original algorithm is based on a divisionof
cycles for row elimination of matrix. The divided cycles arecar-
ried out on separate cores of SMP computer.

E.1 Execution Time

The total execution time of a parallel algorithm is the sum of
the communication complexity, computational complexity and
initialization time

T (s, p)par =
tc

pcore
(
−n+ n2

2p
+

n+ 3n2 + 2n3

3p
)

+
n ts
p

+
ntw
2

+
n2tw2

2p

+
1

2
n (n− 1) tinit pcore. (24)

IX. EXPERIMENTAL RESULTS

A. Measurement Methodology

According to the method of measurement the methodolo-
gies can be divided into direct and indirect. For empirical per-
formance measurement of algorithms more suitable methods
are the direct because of ease of implementation. The overall
methodology of measurement is shown in Fig. 14.

A.1 Measurement Methodology for Sequential Algorithm

Empirical tests of a sequential program was conducted on
computer with multi-core processor. The tests examined theex-
ecution time, which is required for processing sequential pro-
gram. Each test consists of five sessions, within each session
the execution time was measured. Then overall execution time
is calculated as the average from all execution times.

A.2 Measurement Methodology for Parallel Algorithm

The basic prerequisite for the measurement of complex per-
formance metrics of the parallel system is the development of
a particular parallel algorithm for the architecture of thework-
station with available software. GEM parallel algorithms have
been implemented for a distributed memory architecture with
the help of MPI and the shared memory architecture with the
help of OpenMP standard.

A.3 Measurement Methodology for Parallel Algorithm on
Shared Memory Architecture

For the measurement of execution time of parallel algo-
rithms for architectures with shared memory analogue meth-
ods to measuring sequential algorithms were used. Time exe-
cution of algorithm was measured using the built-in functions



HÚDIK AND HODOŇ: PERFORMANCE OPTIMIZATION OF PARALLEL ALGORITHMS 443

Fig. 15. Flowchart of measurement of execution time for architectures
with shared memory.

ompget wtime() in library OpenMP, which returns the num-
ber of milliseconds from the specified point. Fig. 15 shows the
methodology of direct-measuring.

A.4 Measurement Methodology for Parallel Algorithm on Dis-
tributed Memory Architecture

Direct measurements on a distributed memory architectures
are based on measuring the total execution time of a parallel
algorithm. When analyzing the parallel algorithm it is necessary
to take into account overhead costs that are necessary to ensure
communication between processes. Individual components can
be measured separately

T (s, p)total = T (s, p)comm + T (s, p)comp. (25)

Overhead costs consists of time required for communicationbe-
tween processesT (s, p)comm and computational cost consists
of calculation timeT (s, p)comp. The algorithm is then divided
by the carrying out the communication and of carrying out the
calculation itself. The measurement is performed for different
problem sizes and number of different processes. The Execution
time was measured using the built-in functionsMPI Wtime(),
which is contained in the MPI library. The measurement is re-
peated for different numbers of processes as well as for different
size of the problem. The duration of the algorithm was mea-
sured by using the toolMPI Wtime()which is a function of the
standard MPI library. This function returns the number of mil-
liseconds from a designated point. The overall methodologyof
measurement is shown in Fig. 16.

Slave 0 Slave n

Fig. 16. The principle of measuring the execution time and communica-
tion time for architectures with distributed memory.

B. The Architecture

For architectures with shared memory OpenMP standard was
used. All algorithms were implemented in the C language. GNU
GCC compiler was used in version 4.6. Experiments on algo-
rithm for environment with shared memory took place on multi-
core server with two Intel Xeon processors.

Measurements of algorithms for environments with dis-
tributed memory architecture have been carried out on the NOW
parallel computer, which consisted of eight SMP computers that
are connected to each other through a gigabit Ethernet switch
(switch) 3Com. Computer specifications are listed in Table 2.
On the workstations there was installed 64-bit Ubuntu Linux
12.10. MPICH2 in version 1.4.0 was used as MPI implemen-
tation.

C. Measurements on Architectures with Distributed Memory

C.1 Execution Time

The total execution time of parallel algorithms were measured at
a constant input load with a variable number of processes as well
as the variable input load with a constant number of processes.
The following measurements are calculated for the input load
n = 1500, i.e., input matrix size is1500×1500. The calculation
is performed in double precision decimal numbers (DOUBLE).

C.2 Effect of Growth of Number of Processes

Fig. 17 illustrates the dependence of execution time imple-
mentation of synchronous and asynchronous version of the
GEM algorithm, the number of processes at a constant load. The
graph shows that the execution time with an increasing num-
ber of processes is decreases. The asynchronous algorithm ac-
cording to analyses conducted in previous sections should be the
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Table 2. Parameters of SMP computers.

Number of nodes Procesor Number of cores RAM Network interface
8 Quad core Q6600 2.4 Ghz 4 4 GB 1 Gb/s
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]

Fig. 17. Effect of change in the number of processes on the execution
time.
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]

Fig. 18. Analysis of the impact of computing and communication delays
for synchronous GEM alg. at the input load n = 1500.

limited by the time of transmission of row to the neighbouring
process. Contrary synchronous algorithm has a breaking point,
where communication time exceeds the computational time and
it will affect the overall execution time. For a detailed analysis
of this phenomenon it is necessary to divide the total execution
time on partial components; time communication between pro-
cesses(tcomm) and computation time(tcomp).

Fig. 18 shows the total execution time of synchronous GEM
algorithm divided into individual components.

Gradual enlarging the number of processes involved in the
computation reduces the calculation time, but from a certain tip-
ping point, where communication achieved faster growth than
the time of computation, execution time begins to be limitedby
time of communication. From this point begins the overall exe-
cution time to increase.

Fig. 19 shows the total execution time asynchronous GEM al-
gorithm that is divided into individual components. The graph
shows that communication for a small number of processes in-
creases, this is due to unwanted synchronization process, which
is caused by the fact that the computation is so demanding that
there is only limited pipe-lining of calculations. Processes are
forced to wait for valid data. With increasing number of pro-
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Fig. 19. Analysis of the impact of computing and communication delays
for asynchronous GEM alg. at the input load n = 1500.
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Fig. 20. Efficiency of synchronous algorithm.

cesses starts to fulfil pipeline of calculations and communication
begins overlap with calculations. When there are a sufficiently
large number of processes, communication stabilizes at a con-
stant value.

C.3 The Efficiency of the Use of Computing Resources

Efficiency of utilization of computing resources is an impor-
tant indicator for assessing the suitability of a specific algorithm
for parallel computer architectures. Efficiency is a measure of
utilization of computational capacity during the calculation of
the parallel program. Fig. 20 shows the dependence of the ef-
ficiency synchronous GEM algorithm from the number of pro-
cesses and the size of the input problem. The graph shows that
the efficiency of utilization of computing resources with increas-
ing number of processes rapidly decreases for all range of input
load. Synchronous algorithm use inefficiently allocated comput-
ing resources.

Fig. 21 shows the dependence of the efficiency of asyn-
chronous GEM algorithm on the number of processes and the
size of the input problem. The graph shows that the efficiency
of utilization of computing resources with increasing number of
processes decreases, but even at low input size asynchronous al-
gorithm achieves better efficiency than the synchronous version.
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Fig. 21. Efficiency of asynchronous algorithm.
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Fig. 22. Effect of change in the number of processes on computation
time, n = 1500.

D. Measurement of the Hybrid Algorithm

The hybrid algorithm uses a combination of environment with
distributed memory along with the environment with shared
memory. The measurements are focused on the comparison of
the hybrid algorithm with asynchronous GEM algorithm con-
sidering that the hybrid algorithm is based precisely on this al-
gorithm. Measurements were performed on a network consist-
ing of 7 NOW SMP computers, each containing Intel Q6600
quad-core processor. Each process in the hybrid algorithm was
divided into four threads. The graph shows the number of pro-
cesses multiplied by the number of cores in the computer so that
we can compare the algorithms to each other. Fig. 22 shows the
growth in the number processes to the overall execution time
with constant input loadn = 1500. The hybrid algorithm shows
worse results than asynchronous algorithm. This is due to the ne-
cessity initialization of the threads at each matrix transition and
also their implicit synchronization at the end of each calculation
cycle. The graph shows that the hybrid algorithm is more effi-
cient than synchronous algorithm. Since the hybrid algorithm is
based on asynchronous algorithm that it is more efficient than
synchronous, and so the hybrid algorithm is also more efficient
than synchronous algorithm.

D.1 Influence of Growth Processes

For a detailed analysis of the hybrid algorithm, it is neces-
sary to divide the total execution time of the algorithm on par-
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Fig. 23. The impact of computation and communications delays for a
total execution time of hybrid algorithm, n = 1500.

n

T
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]

Fig. 24. The impact of computing and communication delays on the
overall execution time of hybrid algorithm with increasing input load,
p = 24.

tial components -tcomm, tcomp, and time initialization threads.
The component of initialization time of hybrid algorithm could
not be done due to the fact that this component is highly de-
pendent on the operating system, which provides initialization
and schedule them to run on the processor. Its values show great
variability in comparison to the communication time. Fig. 23
shows the total time of implementation of hybrid algorithm di-
vided into individual components.

D.2 Effect of Growth of Load

Fig. 24 illustrates the effect of increasing input load on a to-
tal execution time of the hybrid algorithm, as well as its indi-
vidual components at constant number of processesp = 28.
The increasing input load increases computation time and the
amount of communication between processes. The result is that
the overall execution time increases.

D.3 The Efficiency of the Use of Computing Resources

Fig. 25 shows the dependence of the efficiency of hybrid al-
gorithm to the number of processes and the size of the input
problem. The graph shows that the efficiency of computing re-
sources utilization with an increasing number of processesde-
creases, but with an increased input load efficiency declines less.
Compared with asynchronous algorithm the hybrid algorithmis
less scalable. This is due to the fact that after computing isdone
the threads are merged back to the single process and this results
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Fig. 25. Efficiency of the hybrid algorithm.

in their synchronization, which results in lower concatenation of
calculations.

X. CONCLUSION

Based on the conducted experiments and by analysis of the
obtained results, we can conclude that GEM synchronous algo-
rithm from theoretical analysis of the costs of the parallelal-
gorithm is an inefficient algorithms and is not suited for mas-
sive parallel systems. The experimental results confirmed that
an increase in the number of processes, communication rapidly
increases and it quickly begins to dominate among the compo-
nents of the total execution time of the algorithm. Communi-
cation load becomes the dominant factor that limits the effec-
tiveness of the algorithm. The measured efficiency also shows
that this algorithm inefficient uses the allocated computing re-
sources. Similar algorithms will benefit more from reducing
synchronization, so that there was a concatenation calculations,
rather than from more powerful communication networks.

GEM asynchronous algorithm by theoretical analysis of cost
of parallel algorithm is one of the efficient algorithms thatare
suitable for massive parallel systems. The experimental results
confirmed the effectiveness of the algorithm. With the increas-
ing of input load efficiency increases significantly. From experi-
ments the communication also appears to be the limiting factor,
but the assumption is that the massive parallel system wouldbe
fully pipelined with term of calculation and so the communica-
tions will have less impact.

Computational complexity of hybrid algorithm, which is de-
rived from the asynchronous algorithm, increases the execution
time by initialization of the threads and implicit synchroniza-
tion. Therefore, a hybrid algorithm is less suitable for this type
of application.

The algorithm with shared memory works effectively only to
a point, while the input load does not cause the need to access
to global memory (cache miss).

Conclusion from the experimental results and also from the
theoretical analysis of the finite methods for calculating the sys-
tem of linear equations is that the best algorithm suitable for
massively parallel deployment is the asynchronous implemen-
tation with use of MPI. The hybrid implementation as it was
described in this article is not suitable for massive parallel de-
ployment, because of the overhead created by starting of new

threads and by implicit synchronization which increase theover-
all amount of synchronicity in algorithm.

Experimental results confirmed the need for more efficient
communication and effective communication algorithms, which
will be adapted to new architectures of parallel computers.
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