436

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGBT 2014

Performance Optimization of Parallel Algorithms

Martin HOdik and Michal Hodon

Abstract: The high intensity of research and modeling in fields of
mathematics, physics, biology and chemistry requires newaen-

puting resources. For the big computational complexity of ach

tasks computing time is large and costly. The most efficient ay

to increase efficiency is to adopt parallel principles. Purpse of
this paper is to present the issue of parallel computing withem-

phasis on the analysis of parallel systems, the impact of canu-

nication delays on their efficiency and on overall executiortime.

Paper focuses is on finite algorithms for solving systems ofn-

ear equations, namely the matrix manipulation (Gauss elintia-

tion method, GEM). Algorithms are designed for architectures
with shared memory (open multiprocessing, openMP), distbuted-

memory (message passing interface, MPI) and for their combia-

tion (MPI + openMP). The properties of the algorithms were an

alytically determined and they were experimentally verifiel. The

conclusions are drawn for theory and practice.

Index Terms: Collective communication operations, efficiency,
Gauss elimination method, modeling, parallel algorithms, par-

allel architecture, parallel computation, performance prediction,

pipelined broadcast, system of linear equations.

I. INTRODUCTION

There are lot of software tools that the developer can choose
from, but the question is which of them to pick for the best per
formance on a given hardware platform. The next parts of this
paper discuss analytical approach to performance evafuefi
parallel algorithm (PA) and analysis of PA for solving thetgm

of linear equation is conducted on different hardware ptatf

and software tools.

II. ANALYSIS OF PARALLEL COMPUTERS

Computer architects have always seek to improve the perfor-
mance of computer architectures. High performance can come
from fast integrated circuits with high density of integoator
using the parallel principles. The trend of single procesaper
computer ended, because of the physical boundaries thiat lim
the computing power of single processor system. This paper i
devoted to modern computer architectures, parallel enxrient
using multiple computing nodes (processors, cores, coangut

A. Parallel Computers

Today trends in the world have been heading towards a sub-
stitution of conventional supercomputers with group okint
connected, highly specialized computers (clusters) orgrow

_The high research intensity in fields of mathematics, plsysigy| workstations (NOW) [3]. The reason for the enlargemeint o
biology and chemistry, requires new powerful computing rejusters in the world is in particular their universalityytaal in-

sources. For the large computational complexity of speteifiks
computing, e.g., [14] in intelligent buildings automation[12]

dependence, price and scalability according to currentasiy
of users. The main disadvantages are the complex management

in multirobot systems, the time is long and costly. The dgploand lack of shared memory. Parallel systems achieve higiter p

ment of parallel principles proves to be the most effectiles
tions. The parallel principles open up new possibilitiehaf-

vesting computer processing power. The use of paralletsyst

formance, but their high cost prevents them from wider disse
ination.
The trends in recent years were symmetric multi-processor

brings new complex problems that must be addressed to &higystems, the number of the processor architecture for SMP

the desired increase in performance either in classic hegtop

steadily increased. Multi-core CPUs as well as multicalul

mance computing (HPC) solutions or in specific low-cost enfeell) processors are currently starting to dominate [li]{ An
bedded solutions, e.g., FPGA [15]. The ongoing transitin gxample is TeraScale processor, which achieves perfoenanc
the parallel principles is already supported by hardwamh suamong teraflops and the number of cores in the future will be

as multi-processor, multi-core technology, symmetrictipto-

in the order of hundreds. The main advantage of multi-cooe pr

cessing (SMP) and also software such as message passingddsors, in addition to increased performance, is a signifie-

terface (MPI), open multiprocessing (OpenMP), paralleial

duction in processor consumption and therefore more econom

machine (PVM), Java, C#, Intel TBB. Increasing throughgiut @) operation of computer. Another example of increasing i

interconnection networks helps development of paralidinel-
ogy (Myrinet, Infiniband, giga ethernet, 10 gigabit etheyfie
bre channel).

fluence of multi-core technology is new coprocessor carthfro
Intel called Xeon Phi. The Intel Xeon Phi coprocessor cdssis
of up to 61 cores connected by a high performance on-die bidi-

The computer hardware is evolving fast. For good utilizatiorectional interconnect. The coprocessor runs a Linux dipgra
of the new hardware also the software platform need to evolgstem and supports all important Intel development tdits,

Manuscript received April 14, 2014.

The research is supported by the European Regional DevelupRrund and
the Slovak state budget for the project “Research Centrexnfltsity ofZilina,”
ITMS 26220220183.

M. Hudik and M. Hodoh are with the Department of Technicalb€rnet-
ics, University ofZilina, Univerzitna 8215/1, 010 2&ilina, Slovakia, email:
{martin.hudik, martin.hudik@fri.uniza.sk.

Digital object identifier 10.1109/JCN.2014.000074

C/C++ and Fortran compiler, MPI and OpenMP, high perfor-
mance libraries like MKL, debugger and tracing tools like In
tel VTune Amplifier XE. Traditional UNIX tools on the copro-
cessor are supported via BusyBox, which combines tiny ver-
sions of many common UNIX utilities into a single small exe-
cutable [10].

In last decade the Grid has starts to emerge as an alternative

1229-2370/14/$10.0q0) 2014 KICS

HUDIK AND HODON: PERFORMANCE OPTIMIZATION OF PARALLEL ALGORITHMS 437

of distributed parallel computers [11]. It represents asilg@x- parallel algorithm can be defined as
pandable architecture of a parallel computer that can dwclu
any device capable of communication [4] e.g., SMP compyters C(s) = pT(s,p). 4

computers with Intel Xeon Phi coprocessor card or with GPUs i
etc. d(s) represents the total work done by all processors involved

in the calculation. Parallel program is called cost optidha
C(s) =T(s,1), i.e., when the total number of operations per-
Ill. MODEL OF COMMUNICATION COST IN formed is same as for a fastest sequential algorithm, wharse ¢
COMPUTERS WITH DISTRIBUTED MEMORY putation time isl’(s, 1).

The total time required to move a message consists of t@e
following partial times: '
. t, — Starting time - the time required for processing / preparB-1 Parallel Speed-Up

Specialized

tion of message on the receiver and transmitter LetO(s, p) is the total number of operations carried out by the
» tn —Per-hop time —time required to move a message betwegRrocessor system for application of sigel'(s, p) is the time
two neighbouring nodes to perform the parallel task. In generdl(s,p) < O(s,p) if

o t,, — Per-word transmit time — the bandwidth of the transmig: > 2 We assumé&(s, 1) = O(s, 1) for a single processor sys-
sion channel is words per second, so the time to transfer ongm (classical sequential system). Parallel accelerétipeed-

word is the inverse of the, = 1/r. up) is then defined as
teomm = Uty + mity, + ts. (1)
. . S T(s,1
This equation represents the cost model for communication S(s,p) = T(S’). (5)
sending messages of sizebetween the nodes distanumps. (5.7)

Since in most systems the number of héopsssmall, we ignored g 2 Efficiency
I ty, (per-hop) time. The resulting time of communication “point .)
to point” is then Efficiency of the system for the-processor system is defined

tcomm = Miy + ts. (2) as S(s p) T(S 1)
Ele.p) = p pT(s,p) ©

IV. MODEL OF COMMUNICATION COST IN
COMPUTERS WITH SHARED MEMORY

Estimate the cost of communications for computers with
shared memory is much more complex. Many variables need®o Shared Memory
be taking into account to produce a comprehensive communicayn parallel algorithms versus sequential algorithm is sece
tion model. Such a model would be very specific and dependegty for parallel access to shared data to use control mischan
on particular computer architecture, and would not be g#lyer {hat cause additional delays. In modelling the performafce
applicable [13]. _ _ parallel algorithms for classical parallel systems witharstl

In a simplified model, all the delays associated with memop{emory, these overheads neglected because it is assurhizd tha
operations, network and other delays is added;teonstant. comparison with the workload of the calculation they are-con
The t, constant is related to first access time to the coher%riw(gerau:)|y lower [5]. Therefore, for the parallel algoritarfor
shared data the size of words. Furthermore, we assume thadhared memory architecture, the time complexity is reduoed

access to shared data is more time-consuming as access @ putation complexity. Interpreting this assumptioreikation
cal data and therefore time access to one woris assigned to 5 ine asymptotic function means:

shared data access. From the previous implies that for tine si
plified model we can write the equation: w(s) = max[computation, i(s,p) < computation]

= O(computation)

VI. PARALLEL ALGORITHMS

(7)
tcomm = Mty + Ts. (3)

This equation is identical to the (2) describing a simpliftedt
model for computers with distributed memory. Constapend g istributed Memory

t,, are for the model describing computers with shared memory o
much smaller. Distributed PA (DPA) for existing parallel computers based

NOW, SMP, and Grid requires for performance modelling a
complex analysis of all relevant components for modellieg p
V. PERFORMANCE EVALUATION formance [9]

A. Classic Metrics « The impact of parallel system architecture,

« the impact of inter-process communication (IPC),

A.1 Parallel Cost « communication initialization (start-up time),

Let T'(s,p) represents a parallel algorithm for solvipgro- « data transfer,
cessors{ defines the size of the problem). Then the price of this switching (transmission through more communication npdes

wherew is a workload and: is a delay.

438 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGBT 2014

! —onewalbroadcasim 2 X a communication structure. Hypercube is one of the best possi
() () eee() () () eee ble communication links, but in practice is often not readiz

_ When building a financially less demanding parallel systems
Fig. 1. All-to-one and one-to-all. like NOW most commonly used is interconnected interconnec-
tion (linear list).

- All-to-one broadcast—

VII. THE SYSTEM OF LINEAR EQUATIONS

Consider a system of linear equations (SLQ) [2] in the form:

a0,0T0 + @p,1%1 + -+ + G0n—1Tn—1 = bo,
a1,0T0 + 1,171 + -+ + Q1 p—1Tn—1 = b1,

On-1,020 + Qn-1,1%1 + -+ Ap—1n-1Tn—1 = by, 9
In matrix notation given system can be written as

Ax=b (20)

whereA is matrix of coefficientsh is vector of right side ans

is vector of unknowns. Trying to solve it means to find all solu
Fig. 2. One-to-all communication on the hypercube. tions of this system. The solution for system of linear eipunest

9 means to find the vecter= (r1,rs, - - -,rn)T for which ap-
plies Axr = b. To calculate the system of linear equations
there are many methods that are divided into two basic groups
finite methods and iterative methods [8].

T(&P) = TCOmp + Tpar + Tinteract (8) « Direct methods (finite),

h d ve the individual del « Cramer’s rule,
whereT comp, Tpar, aNAT ieeract Jive the individual delay to « elimination methods,

pgrfo_rm the computation, overhead for parallelism and comm _ Gauss elimination,
nication overhead.

« and computation itself.
As a result of these effects the analyse of the total delay is

— Gauss-Jordan elimination,

B.1 Collective Communication: One-to-All (broadcast) ang Other (LU decomposition),

All-to-One Reduction « and iterative methods [7].
Parallel algorithm often needs to send identical data tpral
cesses or a subset of processes. This operation is calleda@-br VIIl. PARALLEL ALGORITHMS GEM
cast.

For one-to-all broadcast only one process has data of size of OF Solving the system of linear equation we choose a sim-
m, which will be distributed. At the end of the operation ther8l€ gauss elimination method (GEM), because of its easysmpl
will be p copies of the original data, which were sent to each prBlentation and it is a good algorithm for analysis commuineat
cess. The opposite operation is called an all-to-one réstuct impact on overall performance.
In all-to-one reductions eaghcontributing process comprises a Finding solutions to systems of linear equations is divided
buffer containing)/ data with the size of. Data from all pro- into two parts — the matrix transformation and the calcatatf
cesses are combined through associative operation and-suBBknowns [6]. We will discuss only part of the matrix transfo
quently accumulated in the target process. This commuaitatmation, because it has a dominant influence on the perforenanc
method is used for example to find the maximum, minimur@f the algorithm.
sum, etc.

Algorithm: The basic broadcast algorithm uses method ¢ Parallelization above the Shared Memory

recursive doubling. When recursive doubling starts thegse Algorithm working over the shared memory works with a

sends a message to one process and on the next step both (ae matrix of coefficients: x n. Number of processes are
cess sends a message to another process. At each step doHFéﬁ%d, each of which operates only over their common ratri
the number of message senders. To complete the broadtsastc&bck of rows). GEM steps are shown in Fig. 3. The first pro-

necessary to dorieg,p steps. cess calculates and synchronizes the remaining procedses.

Hypercube: We imagine hypercube as extended mesh Nty synchronization superior process announces that iitecar

work in d dimensions. Algorithms used for the mesh can i ihe calculation and stored data are valid. After the kymc
applied and used (_:on_secutwe_ly for each dimension of the Rys 54 processes load row from memory of superior process
percube. Communication begins at node 0. and carry out the elimination and computation. Next in order
B.1l.a Evaluation. Table 1 provides an overview of commwf overarching process synchronizes other processes aitd so
nication operations and time requirements for the hypercutontinued until complete elimination of matrix is done.

HUDIK AND HODON: PERFORMANCE OPTIMIZATION OF PARALLEL ALGORITHMS 439

Table 1. Overview of time complexity for individual collective communication methods.

Comunication operation Time
One-to-all broadcast, all-to-one reduction miR[f ¢, m)log,p, 2(tslogyp + t,m)]
All-to-all broadcast, all-to-all reduction ts logop + tum(p — 1)
All-reduce min[¢s + t,m) logyp, 2(ts logep + tyym)]
Scatter, gather tslogop + tyum(p — 1)
All-to-all personalized s + tym)(p — 1)
Data retrieval Data retrieval Data retrieval n
] | | | r A N
Py ! P —! P e
by } - E"mi"atioll . Ehmmatm":} r Elimination AO ,A(0+I’l-1/p-1) o BO,B(0+I’I-1/[)-1),...
| I omputation/ | Synchronization
. 1 EliminatiorL: c. _pt.t /} v Al,A(1+n-1[D-1),... Bl,B(l-l-Vl-lﬂ?-l),...
B - ion | Synchronization
| e i ? A Aerifpa).. B2 Beprapa..
Po [Computation | Synchronization \ | H
| | | o .
‘ ‘ ‘ Steps Ap1 Apanapa),. Bp.1 Bp-1sn-1p-1y,...
Fig. 3. GEM parallel algorithm above the shared memory. Fig. 4. Graphical representation of a cyclic decomposition.

Synchronization Synchronization Synchronization

A.1 Total Execution Time

P3 i ->—>: -»—»t —
In determining the total execution time of the parallel al-, ! st) | i Emenen | Elimination

gorithm over the shared memory, the analysis of comput: eiminaton | B ok

tional complexity is limited to the computation itself. Cem :

munication part can be neglected, given the fast communic’ mmpmﬂoﬁ Broadcast

tion link with the memory. Parallel complexity is derive ad-f ‘

lows: Parallel Gaussian elimination performed approxétyat

1 Z Z" = *"*" dividing and approximately
121 12_12k1 :% . . . I .
Subtraction and mu|t|p||cat|on For simplicity, we assuthat that are using it to carry out their part of the eliminatiortioé
all arithmetic operations are performed in a unit time. Campmatrix.

tational complexity can then be written as

Computation/ Broadcast !
Elimination

|
1
|
|
T

Steps

Fig. 5. Synchronous parallel implementation of GEM.

B.2 Analysis of the Parallel Algorithm

T (s,p) R +n? i n+ 3n” + 2n’ (11) The total execution time of a parallel algorithm is the sum of
Pleomp = te 2p 3p the communication complexity and computational compyexit

where the constamt represents average execution time of a sin-)) X
gle operation. B —n+n® n+3n°+2n
T8 P)par =te | =5, — + 3p

L . 12
B. Parallelization over Distributed Memory 1 (12)
. . . . + 5n(2ts + ty + nty)logyp .

When designing parallel algorithm from sequential aldonit 2

it is important to choose the right decomposition stratdgyr-
thermore, it is important to choose the preferred model aico B.3 Modification of Broadcast Communication Algorithm to
munication. Communication takes place either synchrdgous Improve the Synchronous Version of GEM Algorithm for
or asynchronously. Because the synchronous communidation Implementation in a Multiprocessor Environment

ineffective, in this paper we only analysis the asynchranar-

. Th d trend of SMP computers witkintegrated com-
sion of GEM algorithm. © modern rend o cormp 9

puting cores is the future of parallel systems. Today’s rudte
workstations typically contain 4, 8, 16 and more computesor
For efficient use of GRID, NOW or parallel computers, consist
For simplicity, row cyclic decomposition is selected. Eacing of such a SMP computers, need to adapt existing software
computing node is cyclically assigned with row of matrix foe tools to take into account the characteristics of a suctesyst
ficientsA andb vector elements of right sides. Thus, the entire From the perspective of optimization GEM synchronous al-
matrix A of sizen x n and vectob of sizen are divided among gorithm it should focus on effective inter-process comroani
p processes, each process is assigrgdrows tion, which is one of the main limiting factors.
The GEM parallel algorithm based on the sequential versionBased on the domain parting Fig. 7 we can split communica-
is complemented with a communication section, that is ¢esig tion on inter-node communication (main domain) and intoalan
to send the currently processed row to the remaining presessommunication (sub-domain).

B.1 Synchronous Implementation

440

Vs D
{ PROCESSP |
R 4

NumOfRowsInSegmen t= MatrixSize/
NumOfProcesses;

for (inti=0;i<
MatrixSize; i++) -

i of size n-i .
n-i

.
o 5
(/ﬂm | th\é\
“sender? g
=~ No
Yes J.
v v
Sendof a row Receiving of
row i of size ZComunication

A J
for (intj = currentRow; j<
NumOfRowsInSegment; ji+). .

—

eliminator =
segmentOfMatrix[j][i] / row[i];

Z Z Eliminator
preparation

=1
for (intk=i; k<

segmentOfMatrix[j][k] -=
row[k] * eliminator;

MatrixSize + 1; —€ .
Row elimination

Ve N
(End —
A 4

Fig. 6. Flowchart of the parallel algorithm GEM with an indication of

computing and communication complexity.

Subdomain 1 Subdomain 2

ol

Main domain

RtS

Subdomain 3 Subdomain 4

Fig. 7. Division of the communication domain on the sub-domains.

For the time analysis of algorithm, we start from Fig. 8,

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGBT 2014

Start of communication

Internal 1

comunication

Comunication in main 2
domain

Internal

i
Bo=0)(Bo=0)@o-0) w3

End of
communication,

Fig. 8. The steps of proposed sub-domain broadcast communication
algorithm.

resents inter-node communication in the main domain and the
time complexity is derived from the broadcast algorithm de-
scribed in the previous sections. At the beginning we what to
send message of size to (p x j) process, wherg is the num-
ber of SMP computers with multiple cores (processors);aisd
the number of those cores (processors).

Total time to deliver single message from one process ta othe
is the sum of all partial times and applies

T=T+1T>+T;
= (tye + twem) (n) +(t, + twm)logyp + (ty. + twem)(n)
= 2(t,e + twern) (n) + (¢, + twm)logyp . (13)

Assuming that the communication inside the computer (nhode)
is of the order faster than communication between computers
(nodes), i.e.ts,. < ts andt,. < t,, the resulting equation is
simplified only on the transmission of messages between com-
puters (nodes) in the main domain.

T = (t, + twm)logyp (14)

from this assumption the following equation is valid for thee
complexity of the GEM synchronous parallel algorithm:

2p 3p

—n+n* n+3n*+2n°
T(S’p)par:tc(n-+mn +n n n)
(15)

1
+ 571(21?5 + tw + nty)10goPsmp

wherep is the total number of processors (cores) parallel sys-
tem andpsy,p the actual number of SMP computers forming a
parallel computer.

iI?.4 Asynchronous Implementation

is clear that sending one message to all recipients happens iWith asynchronous GEM each process independently carries
three steps, which are performed sequentially. The firptamtel out operations until the whole algorithm performedraltera-

the third step represent internal communication, whiches dtions needed to transform matrix A on the upper triangular ma
rived from point-to-point communication. The second stgp-r trix. Processes carried out one of following steps:

HUDIK AND HODON: PERFORMANCE OPTIMIZATION OF PARALLEL ALGORITHMS 441

tw

Process

P, |

Iy

P

P, |

Py

Po

Communication/Elimination APCommunicanon 47(p-1) (ts+twm)

Fig. 9. Asynchronous parallel implementation of GEM. Fig. 11. Filling the linear tree.
tw tw @@@
0 —

Fig. 10. Computers arranged in a threaded linear tree. 1

1. If the process has some data to send, then sends them to a
particular process.

2. Ifthe process has appropriate data to calculate therrhiexa
out the calculation.

4 >
3. In other cases, the process is waiting to receive datadieror -<—(p-1) (ts+twm)+(X-1)(twm)—>l
to perform the previous two steps.
Such realized algorithm (see Fig. 9) is optimal with regartthe Fig. 12. Sending a message through a pipelined linear tree.

sequential equivalent. To implement this algorithm we use-n

blocking communication methods and processes are logicall js the size of the packet. After filling the linear tree thet s
arranged in a linear linked list. Communication is carrietia i,¢ message go through the whole tree to the last node, asishow
a manner similar one-to-all on a pipelined linear list. Some Fig. 12, whereX is the number of packets for which the mes-
plementations of MPI provide non-blocking MPI collective-o sage of sizé// divided and the size per packet, i.&,= M/m.
erations. In that case, implement one-to-all (broadcasthotd ¢ the end of this process, all nodes have a copy of the message
can be used. The total transmission time broadcast algorithm usingaline

C. Modification of Broadcast Communication Algorithm fo reeis the sum of the t|r_m_e needed for the initial tree fillimgia
e time to send a remaining packets

Transforming the Synchronous Version of GEM Algorith
to the Asynchronous Version Ty = (p—1)(t, +twm) + (X = 1)(tum). a7

The time complexity analysis shows that sending one mes-The total time for sending one message from one process to

sage to all recipients happens in three steps, which are Plprocesses is given by the sum of partial imes
formed sequentially. At the beginning the message of Bze

is send tp x nprocesses, (whegeis the number of SMP com- T=T+T+T3
puters with multiple cores (processors) amna the number of 7' = (¢, + t,M) (n) + (p — 1)(t, + twm) + (X — 1)(tum)
such cores (processors)). For modelling point-to-pointicm- T (t, 4 tweM) ()T

nications between computers (nodes) we use (2) and for com-_
munication between the cores (CPUs) within a single compute 2boe + twe) () + (p = D(t, + twm) + (X = 1)(twm).

(node) we use (3). Then, for step 1 and step 2 is valid equation (18)
Assuming that the communication inside the computer (node)
Ty =Ty = (t,, + tweM)(n). (16) s of the order faster than communication between computers

nodes), i.e.fs. < ts andt,. < t,, the resulting equation is

This equation de_sc_rlbes t_he sequential sending one mess ﬁﬁ:)lified only for the transmission of messages between-com
to all processes within a single computer (node). Computers

T . ._puters (nodes) in the main domain
(nodes) communicating in step 2, are logically arranged in"a
threaded linear tree as shown in Fig. 10. The message iedivid T=(p—1)(t, +tum)+ (X = 1)(tum). (19)
into smaller parts (packets) that are sent sequentialyutiit a
liner pipeline. For time complexity analysis of the algbritthe p_ Analysis of GEM Asynchronous Algorithm
algorithm is divide into two steps. The first step is sent pért
the message (packet) through linear tree until it reacheekast
node. This step is called filling the linear tree and it's shaw Computational complexity is the same computational com-
Fig. 11, wherey is the number of communicating processes, ardexity of algorithm for architectures with shared memonga

D.1 Computational Complexity

442 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGST 2014

Sequential
algorithm solving)
Rl ot Iy

Performance

r—(ts+twm)+(X-1)(twm)—>

tu' tw eoo tu'
N Analyzed problem
L)

metrics o

Calculation of efficiency
 of use of HW resources

PA solving the Performance

problem

metrics

Fig. 14. Measurement methodology.

asynchronous version of GEM algorithm of distributed memor
Modification of the original algorithm is based on a divisioi
cycles for row elimination of matrix. The divided cycles ag-
ried out on separate cores of SMP computer.

Fig. 13. Sending a message to the following process.
E.1 Execution Time

is given by (11). The total execution time of a parallel algorithm is the sum of
the communication complexity, computational complexitg a
D.2 Communication Complexity initialization time
With asynchronous GEM each process independently con- te —n+n2 n+3n2+2n3
duct operations until the whole algorithm performed all n it T (5,P)par = pcore(% + 3p)
erations needed to transform matrix A to an upper triangular nt ot n2t
matrix. This means that after each elimination commurocati = Tw + 2;2

occurs, at which the calculated row is sent to the followingrp
cess and the further processes. Processes are arrangezhin a r + ln (n — 1) tinit Peore- (24)
in a linear fashion. When communicating with use of pipedine 2
broadcast algorithm the time to send a message to the next pro
cess is derived from the Fig. 13.

The total transmission time is the sum of the time needed for IX. EXPERIMENTAL RESULTS
the initial linear tree filling and the time to transmissitretre- A. Measurement Methodology

maining packets. According to the method of measurement the methodolo-

(20) gies can be divided into direct and indirect. For empiricat-p
formance measurement of algorithms more suitable methods
T = (t, +tyn). (21) are the direct because of ease of implementation. The dveral

o . ~methodology of measurementis shown in Fig. 14.
Due to the pipeline character of computation and communica-

tion the total time of communication simplifies only to a datd.1 Measurement Methodology for Sequential Algorithm

transfer to a nearest neighbor. In each iteration the amafunt Empirical tests of a sequential program was conducted on
data to be transferred is reduced. computer with multi-core processor. The tests examine@xhe
5 ecution time, which is required for processing sequentiat p
. Nty = Nty . . . L .
T (5,D) comm = Z (ts +ty (n—1)) = nts + —= + . gram. Each test consists of five sessions, within each sessio
i—0 2 2 the execution time was measured. Then overall executios tim
(22) is calculated as the average from all execution times.

T = (p—1)(t, + twm) + (X — 1)(tum),

n—1

D.3 Execution Time A.2 Measurement Methodology for Parallel Algorithm

The total execution time of a parallel algorithm is the sum of The basic prerequisite for the measurement of complex per-
the communication complexity and computational compiexit formance metrics of the parallel system is the development o
a particular parallel algorithm for the architecture of therk-
station with available software. GEM parallel algorithnes/é

T (s,p). . = t5<n +n? L0 +3n% + 2”3) been implemented for a distributed memory architecturé wit
par 2p 3p the help of MPI and the shared memory architecture with the
tw %t help of OpenMP standard.
+nts+n7+n2 . 23 CPOTEP

A.3 Measurement Methodology for Parallel Algorithm on
E. The Hybrid Algorithm Shared Memory Architecture

This algorithm works over a distributed shared memory. This For the measurement of execution time of parallel algo-
combination emerged from use of technology for communicathms for architectures with shared memory analogue meth-
tion using MPI messaging and communication via shared meods to measuring sequential algorithms were used. Time exe-
ory OpenMP. When designing the algorithm we modified agution of algorithm was measured using the built-in funasio

HUDIK AND HODON: PERFORMANCE OPTIMIZATION OF PARALLEL ALGORITHMS 443

Slave 0 Slave n

Start measuring the

Start measuring the execution times
execution times o o

Initialization E

.~ Initialization 2

Start measuring the
communication time

i Completion of th
Allocation of tasks ompletion of the
measurement of
LOIRISEEssES communication time

Send
values 8

Receive
values

Calculation Calculation

Result

Calculation |] Calculation
) | -
TS SETSeTISSS T ¢
- SUmmar
ization

Completion of the —)
measurement of

Presentation of - m — m d
Presentation of

results results
" Stop measuring the
Stop measuring the
iy T L et e

g Fig. 16. The principle of measuring the execution time and communica-

tion time for architectures with distributed memory.

Transmission
. of the results 8

Transmission
. Of the results o

Fig. 15. Flowchart of measurement of execution time for architectures
with shared memory.

B. The Architecture

ompgetwtime() in library OpenMP, which returns the num- For architectures with shared memory OpenMP standard was

ber of milliseconds from the specified point. Fig. 15 shoues tt!S€d- All algorithms were implemented in the C language. GNU
methodology of direct-measuring. QCC compllfer was use.d in version 4.6. Experiments on alg.o-
rithm for environment with shared memory took place on multi
. . core server with two Intel Xeon processors.
A.4 Measurement Methodology for Parallel Algorithm on Dis- \1aasurements of algorithms for environments with dis-

tributed Memory Architecture tributed memory architecture have been carried out on th&/NO

Direct measurements on a distributed memory architectufallel computer, which consisted of eight SMP computeas t
are based on measuring the total execution time of a paraflf connected to each other through a gigabit Ethernetfswitc
algorithm. When analyzing the parallel algorithm it is neszry (switch) 3Com. Computer specifications are listed in Table 2

to take into account overhead costs that are neces;sarytloeen@zn the workst:;tlpns there was installed 24'b't UbL_’”tUI Linux
communication between processes. Individual componeints ¢2.10. MPICH2 in version 1.4.0 was used as MPI implemen-

be measured separately tation.

C. Measurements on Architectures with Distributed Memory
T (Svp)total =T (Sﬂp)comm +T (Sﬂp)comp‘ (25) C.1 Execution Time
Overhead costs consists of time required for communicaiien 1 N€ total execution time of parallel algorithms were meedat
tween processes (s, p),..... and computational cost consist constant_ mput_ load with ayarlable number of processegls w
of calculation timel” (S7p)comp' The algorithm is then divided &S the van_able input load with a constant number of prosesse
by the carrying out the communication and of carrying out thE"€ following measurements are calculated for the inpud loa
calculation itself. The measurement is performed for diffe 7 = 1500, i.€., input matrix size i$500 x 1500. The calculation
problem sizes and number of different processes. The ErecutS performed in double precision decimal numbers (DOUBLE).
time was measured using the built-in functiod®1_Wtimej],
which is contained in the MPI library. The measurementis r
peated for different numbers of processes as well as fareifit Fig. 17 illustrates the dependence of execution time imple-
size of the problem. The duration of the algorithm was mementation of synchronous and asynchronous version of the
sured by using the todP1_Wtime()which is a function of the GEM algorithm, the number of processes at a constant loael. Th
standard MPI library. This function returns the number of migraph shows that the execution time with an increasing num-
liseconds from a designated point. The overall methodotifgyber of processes is decreases. The asynchronous algodthm a
measurement is shown in Fig. 16. cording to analyses conducted in previous sections shautlleb

g_.z Effect of Growth of Number of Processes

444 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGBT 2014

Table 2. Parameters of SMP computers.

Number of nodes Procesor Number of cores RAM Network interfa
8 Quad core Q6600 2.4 Ghz 4 4GB 1 Gbl/s
5 2
44 1,5
— 3
1 0,5
0 ik et 0
1 6 11 16 21 26 31 2 7 12 17 22 27 32
g p
——Async. alg. —e—Sync. alg. —e—Total —a&—Comm ——Comp

Fig. 19. Analysis of the impact of computing and communication delays

Fig. 17. Effect of change in the number of processes on the execution -
'9 ect of chang P for asynchronous GEM alg. at the input load n = 1500.

time.

1 11 21 31
p

—0— Total «=—#=—Comm ==x—Comp

/1=m1000 m1250 ™ 1500 m1750 m™2000 m™2250

Fig. 20. Efficiency of synchronous algorithm.
Fig. 18. Analysis of the impact of computing and communication delays
for synchronous GEM alg. at the input load n = 1500.
cesses starts to fulfil pipeline of calculations and comation

i_begins overlap with calculations. When there are a suffilsien
limited by the time of transmission of row to the r]e'ghb('.’grmlarge number of processes, communication stabilizes aha co
process. Contrary synchronous algorithm has a breakirrg,po;stam value '

where communication time exceeds the computational tirde an
it will affect the overall execution time. For a detailed bfsés

of this phenomenon it is necessary to divide the total execut
time on partial components; time communication between pro Efficiency of utilization of computing resources is an impor

C.3 The Efficiency of the Use of Computing Resources

cesseslcomm) and computation timeét comp). tant indicator for assessing the suitability of a specifipathm
Fig. 18 shows the total execution time of synchronous GEMr parallel computer architectures. Efficiency is a measfr
algorithm divided into individual components. utilization of computational capacity during the calcidatof

Gradual enlarging the number of processes involved in tttee parallel program. Fig. 20 shows the dependence of the ef-
computation reduces the calculation time, but from a cettpi ficiency synchronous GEM algorithm from the number of pro-
ping point, where communication achieved faster growttmthgesses and the size of the input problem. The graph shows that
the time of computation, execution time begins to be limligd the efficiency of utilization of computing resources witliieas-
time of communication. From this point begins the overa#i-exing number of processes rapidly decreases for all rangepotin
cution time to increase. load. Synchronous algorithm use inefficiently allocateshpat-

Fig. 19 shows the total execution time asynchronous GEM &hg resources.
gorithm that is divided into individual components. Themta Fig. 21 shows the dependence of the efficiency of asyn-
shows that communication for a small number of processes @iwonous GEM algorithm on the number of processes and the
creases, this is due to unwanted synchronization procégshw size of the input problem. The graph shows that the efficiency
is caused by the fact that the computation is so demanding tbhutilization of computing resources with increasing nenof
there is only limited pipe-lining of calculations. Processare processes decreases, but even at low input size asynclsralou
forced to wait for valid data. With increasing number of progorithm achieves better efficiency than the synchronousmer

HUDIK AND HODON: PERFORMANCE OPTIMIZATION OF PARALLEL ALGORITHMS 445

8 13 18 23 28
p

—e—Total —#&—Comm =—3—Comp

Fig. 23. The impact of computation and communications delays for a
7 = m1000 ®1250 1500 ®m1750 m2000 2250 total execution time of hybrid algorithm, n = 1500.

Fig. 21. Efficiency of asynchronous algorithm.
2

1,5

1,5 o 1
>
= L, 05 1

0,5 X

0
0 1000 1200 1400 1600 1800 2000 2200 2400
8 13 18 23 28
n
)4
——Async. alg. —a—Hybrid alg. —e—Sync. alg. Total comm Comp

Fig. 24. The impact of computing and communication delays on the
overall execution time of hybrid algorithm with increasing input load,
p = 24.

Fig. 22. Effect of change in the number of processes on computation
time, n = 1500.

D. Measurement of the Hybrid Algorithm tial components ¢.omm, tcomp, @and time initialization threads.

The hybrid algorithm uses a combination of environment withhe component of initialization time of hybrid algorithmud
distributed memory along with the environment with shareubt be done due to the fact that this component is highly de-
the hybrid algorithm with asynchronous GEM algorithm corand schedule them to run on the processor. Its values shatv gre
sidering that the hybrid algorithm is based precisely on #t variability in comparison to the communication time. Fig 2
gorithm. Measurements were performed on a network consisitows the total time of implementation of hybrid algorithim d
ing of 7 NOW SMP computers, each containing Intel Q6600ded into individual components.
guad-core processor. Each process in the hybrid algoritasn w
divided into four threads. The graph shows the number of pr8-2 Effect of Growth of Load

cesses multiplied by the number of cores in the computerato th Fig. 24 illustrates the effect of increasing input load o t
we can compare the algorithms to each other. Fig. 22 shows thexecution time of the hybrid algorithm, as well as itsind
growth in the number processes to the overall execution tifiglual components at constant number of procegses 28.
with constantinput load = 1500. The hybrid algorithm shows The increasing input load increases computation time aed th

worse results than asynchronous algorithm. This is duestoéh amount of communication between processes. The resubitis th
cessity initialization of the threads at each matrix traosiand the gverall execution time increases.

also their implicit synchronization at the end of each cltan
cycle. The graph shows that the hybrid algorithm is more efid.3 The Efficiency of the Use of Computing Resources

cient than synchronous algorithm. Since the hybrid alparits Fig. 25 shows the dependence of the efficiency of hybrid al-

aorithm to the number of processes and the size of the input
eproblem. The graph shows that the efficiency of computing re-
sources utilization with an increasing number of procesiges
creases, but with an increased input load efficiency dexless.
Compared with asynchronous algorithm the hybrid algorithm
For a detailed analysis of the hybrid algorithm, it is necetess scalable. This is due to the fact that after computidgie
sary to divide the total execution time of the algorithm om-pathe threads are merged back to the single process and thitsres

synchronous, and so the hybrid algorithm is also more efffici
than synchronous algorithm.

D.1 Influence of Growth Processes

446 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGST 2014

threads and by implicit synchronization which increaseotes-
all amount of synchronicity in algorithm.

Experimental results confirmed the need for more efficient
communication and effective communication algorithmsiclvh
will be adapted to new architectures of parallel computers.

E(s,p)

16 ' - (1]
20 "
2 55 /7 2]
P
A=m1000 W1250 =1500 W1750 2000 &= 2250 Bl
4
Fig. 25. Efficiency of the hybrid algorithm. l
[5]
in their synchronization, which results in lower concatéraof (6]
calculations. [7
(8]

X. CONCLUSION

Based on the conducted experiments and by analysis ofE e
obtained results, we can conclude that GEM synchronous al{®]
rithm from theoretical analysis of the costs of the paradlel 11]
gorithm is an inefficient algorithms and is not suited for ma:%lz]
sive parallel systems. The experimental results confirrhad t
an increase in the number of processes, communicatioriyapiﬂa
increases and it quickly begins to dominate among the compo-
nents of the total execution time of the algorithm. Communit4]
cation load becomes the dominant factor that limits theceffe
tiveness of the algorithm. The measured efficiency also shopus;
that this algorithm inefficient uses the allocated compytie-
sources. Similar algorithms will benefit more from reducingG]
synchronization, so that there was a concatenation cailoota
rather than from more powerful communication networks.

GEM asynchronous algorithm by theoretical analysis of cost
of parallel algorithm is one of the efficient algorithms tlaaée
suitable for massive parallel systems. The experimensailte
confirmed the effectiveness of the algorithm. With the iasre
ing of input load efficiency increases significantly. Fronpen-
ments the communication also appears to be the limitingfact
but the assumption is that the massive parallel system warild
fully pipelined with term of calculation and so the commuatic
tions will have less impact.

Computational complexity of hybrid algorithm, which is de‘ﬂ-

REFERENCES

A. B. Abderazek,Multicore Systems On-Chip Practical Software/ Hard-
ware Design2nd ed. Imperial College Press, 2013.

M. Anthony and M. Harvey,Linear Algebra: Concepts and Methods
Cambridge University Press, 2012.

G. Coulouris, J. Dollimore, and T. Kindber@istributed Systems Con-
cepts and Desigrgth ed. Addison Wesley, 2011.

I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computingdagrid com-
puting 360-degree compared,” Proc. IEEE GCE Chicago, IL, USA,
Austin, TX, 2008, pp. 1-10.

F. Gebali,Algorithms and Parallel ComputingViley, 2011.

G. H. Golub and C. F. Van LoarMatrix ComputationsJohns Hopkins
University Press, 2012.

P. Hanuliak and I. Hanuliak, “Performance evaluatioritefative parallel
algorithms,”Kybernetes36, 2007.

P. Hanuliak and I. Hanuliak, “Performance evaluatioritefative parallel
algorithms,”Kybernetes39:107126, 2010.

A. Holubek, “Performance prediction and optimizatiohparallel algo-
rithm,” InterTech Poznan, 2010.

J. Jeffers and J. Reinders, “Intel Zeon Phi coprocebagir performance
programming,’Elsevier Sci. & Technol. Book&013.

J. Joseph and C. Fellensterid computing Prentice Hall PTR, 2004.

J. Micek, M. Hyben, M. Fratrik, and J. Puchyova, “Voicenemand recog-
nition in multirobot systems: Information fusionlit. J. Advv Robotic
Syst.vol. 9, pp. 1-9, 2012.

P. PachecoAn Introduction to Parallel ComputingMorgan Kaufmann,
2011.

Y. K. Penya, “Last-generation applied artificial iligénce for energy
management in building automation,” Rroc. IFAC Int. Conf. Fieldbus
Systems, Appl2003, pp. 79-83.

P. Sevck and O. Kovar, “Very efficient exploitation of GR block RAM
memories in the complex digital system desigh,inform. Control. Man-
agement Systvol. 8, pp. 403-414, 2010.

D. Soudris and A. Jantsclt§calable Multi-Core Architectures: Design
Methodologies and Toal$pringer: New York, 2012.

Martin Hudik received his Ph.D. and Master degrees
in Computer Science from the University Aflina in
2010 and 2013, respectively. He is currently a Lec-
turer/Researcher at the University Aflina. His re-
search interests include the analysis and modeling of
distributed systems, high-performance computing, in-
telligence in embedded systems, and sensor wireless
networks. He has published in the areas of distributed
computer systems modeling and optimization of per-
formance of distributed systems, and sensor wireless
networks. He is currently leading lectures at the De-

rived from the asynchronous algorithm, increases the @i@Cu partment of Technical Cybernetics from the area of apptinatievelopment for
time by initialization of the threads and implicit synchipa Android, distributed systems, and networking.

tion. Therefore, a hybrid algorithm is less suitable fosttyipe
of application.

The algorithm with shared memory works effectively only to
a point, while the input load does not cause the need to acct
to global memory (cache miss).

Conclusion from the experimental results and also from tf
theoretical analysis of the finite methods for calculatimg$ys-
tem of linear equations is that the best algorithm suitabte f
massively parallel deployment is the asynchronous impteme
tation with use of MPI. The hybrid implementation as it wa
described in this article is not suitable for massive parale-

Michal Hodon works as a Research Assistant at
the Department of Technical Cybernetics, Faculty of
Management Science and Informatics, University of
ilina, Slovakia. He received Master degree at the Uni-
versity ofZilina in 2009 in the field of Computer engi-
neering, followed by Ph.D. title in 2013 in the field of
Applied Informatics with the dissertation thesis “On-
board localization technologies for vehicle position-
ing”. His work is oriented on the development of dif-
ferent prototypes of embedded systems where differ-
ent control algorithms upon various application sce-

ployment, because of the overhead created by starting of neos could be investigated practically.

