
430 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGUST 2014

Distributed Database Design using
Evolutionary Algorithms

Umut Tosun

Abstract: The performance of a distributed database system de-
pends particularly on the site-allocation of the fragments. Queries
access different fragments among the sites, and an originating
site exists for each query. A data allocation algorithm should
distribute the fragments to minimize the transfer and settlement
costs of executing the query plans. The primary cost for a data
allocation algorithm is the cost of the data transmission across the
network. The data allocation problem in a distributed database is
NP-complete, and scalable evolutionary algorithms were developed
to minimize the execution costs of the query plans. In this paper,
quadratic assignment problem heuristics were designed andimple-
mented for the data allocation problem. The proposed algorithms
find near-optimal solutions for the data allocation problem. In
addition to the fast ant colony, robust tabu search, and genetic
algorithm solutions to this problem, we propose a fast and scalable
hybrid genetic multi-start tabu search algorithm that outperforms
the other well-known heuristics in terms of execution time and
solution quality.

Index Terms: Ant colony optimization, distributed database design,
hybrid algorithms, robust tabu search.

I. INTRODUCTION

Fragmentation and data allocation [1] are the two most critical
problems when designing distributed databases. Before they
are assigned to a site, the relations are mostly partitioned
either horizontally or vertically. The replication of fragments is
another issue to consider during a design. The memory capacity,
communication channels, and processing power are some other
design parameters. During the most-frequent queries, the data
transferred between sites must be minimized, the locality of the
related fragments must be maintained, and the data volume kept
on the site must be smaller than the memory size.

A data allocation problem (DAP) is an optimization problem
with certain constraints [2]. For instance, the disk I/O speed,
parallel query execution, network load, and load balancingof
the servers are design parameters that need to be handled. A
DAP is an NP-complete problem regardless of these parameters.
The most significant factor contributing to the response time of
a query is the delay of a data transfer among sites. Therefore,
most algorithms deal only with the delay of data to achieve
acceptable execution times. A quadratic assignment problem
(QAP) has some similarities with a DAP, and also keeps track
of the resource locality.

Manuscript received on April 13, 2014.
The author is with the Department of Computer Engineering, Baskent Univer-

sity, Baglica Kampusu, Eskisehir Yolu 20. km 06530 Ankara/TÜRKİYE, Tel:
+(90)312 2462099, Fax: (+90)312 246 66 60, email: utosun@baskent.edu.tr.

Digital object identifier 10.1109/JCN.2014.000073

The QAP was first presented by Koopmans and Beckman
[3]. A set of n facilities andn locations is maintained, and the
distances between locations are defined. A flow is defined for
the amount of supplies to be transferred between each pair of
facilities. The problem is assigning the facilities to different
locations to minimize the flow between each pair multiplied
by the distance between their locations. The QAP can express
the dependence of the fragments and sites, where the fragments
are considered to be facilities and the sites are consideredto
be locations. The flow between two facilities is the amount of
data transferred between two sites, and the distance between two
locations is the cost of sending a data item between the two sites.

The remainder of this paper is organized as follows: SectionII
describes an overview of both a DAP and a QAP. In Section III,
the mathematical formulation behind the modeling of a DAP
as a QAP is handled. Section IV presents the algorithms used.
The experimental environment is then described in Section V.
Finally, Section VI provides some concluding remarks regarding
this research.

II. RELATED WORKS

A DAP can be solved using a static or dynamic allocation.
Static algorithms exploit the defined prerequisites, whereas
dynamic algorithms adapt to the modifications [4]. DAPs and
QAPs have been widely studied by the database research com-
munity. For example, Ceri and Plagatti proposed a greedy
algorithm for redundant and non-redundant data [5]. Ahmad
and Karlapalem [6] introduced a query-driven strategy. Adland
Rankoohi [7], transformed a QAP formulation into a DAP, the
model of which handles the non-redundant allocation of data
with certain capacity constraints. Distributed database man-
agement system (DDBMS) queries access several tables and
fragments over a network. A query is initialized from a site,and
the major portion of the plan execution cost is from the retrieval
of fragments from different sites. Data allocation algorithms
attempt to assign fragments to sites in such a manner that
minimizes the total cost of the data transfer while executing
user and/or application queries. DAP algorithms aim to find an
optimal fragment-assignment solution while also taking into ac-
count the replications, update costs, and average query response
times.

Different queries may share the same sub-tasks, and the
same queries may be issued from different originating sites.
A DDBMS design is a problem with a set of multiple ob-
jectives including the efficient usage of computer storage and
processing resources, and a minimization of the query response
times, while taking care not to violate the constraints regarding
the site capacity. It is necessary to model the problem in a
way that satisfies all of these criteria. Several algorithmsfor

1229-2370/14/$10.00c© 2014 KICS

TOSUN: DISTRIBUTED DATABASE DESIGN USING EVOLUTIONARY ALGORITHMS 431

data allocation and data fragmentation problems in distributed
databases have been proposed in the literature. Techniquesbased
on genetic algorithms (GAs) have been used by Frieder and
Siegelmann [8]. However, their formulations do not consider
the site capacities or replication of fragments and/or tables to
improve the query response times. Ahmad [6] proposed the
use of a GA, simulated annealing, and mean field annealing
solutions, where non-redundant data (i.e., replications)were
not considered. Adl [7] proposed an ant colony heuristic, and
modeled the DAP as a QAP; however, the update and replication
costs are not handled in this work.

III. SOLUTION FORMULATION WITH QUADRATIC
ASSIGNMENT OPTIMIZATION

The data allocation cost can be represented as the sum of
direct and indirect transaction-fragment dependencies [7]. A
transactiont and fragmentf have a direct dependency if the data
from the container site off are transmitted for every execution
of t. There is an indirect dependency if the data need to be
transmitted to a site other than from where the transaction
originates. The data allocation cost is expressed as the sumof
costsCst1 andCst2, as described in (1).

Cst(Φ) = Cst1(Φ) + Cst2(Φ). (1)

Here,Cst1 is the multiplication of two matrices,STFR and
UC, whereSTFR is the site fragment dependency matrix and
UC is the unit communication matrix.UC holds the network
communication costs among the sites.Φ is anm element vector
andΦj represents the site wherefj is stored. Partial cost matrix
PCST 1n×m is the cost of fragmentfj to be stored in sitesi.
The unit partial cost matrix is represented in (2).

pcst1ij =

n∑

q=1

uciq × stfrqj . (2)

The unit partial costpcst1ij , for eachi andj is calculated,
andCst1 is expressed through (3).

Cst1(Φ) =

m∑

j=1

pcst1
Φjj

. (3)

An inter-fragment dependency matrix (FRDEP) is the mul-
tiplication of the matricesQFRl×m×m and Ql×m×m The
execution frequencies of the transactions are representedby
the matrixQFR which is multiplied with matrixQ to obtain
the FRDEP matrix of the inter-fragment dependencies. The
indirect transaction-fragment dependency is shown through Q.
The indirect transaction-fragment dependency costCst2 is a
form of QAP and is represented in (4).

Cst2(Φ) =
m∑

j1=1

m∑

j2=1

frdepj1j2 × ucΦj1Φj2
. (4)

24 3 1 5 6 9 7 8

82 3 9 6 4 1 5 7

2 3 1 5 6

28 3 1 5 6 9 4 7

28 3 1 5 6 9 4

1

2

3

Fig. 1. Stages of PMX crossover.

IV. PROPOSED ALGORITHMS FOR THE DATA
ALLOCATION PROBLEM

A. Genetic Algorithm

GAs exploit the selection, crossover, and mutation opera-
tions on an initial randomly chosen population. They create
new generations, and a fitness function exists to find the best
individuals within the population [9]. The termination condition
may be defined depending on the total execution time, number
of generations produced, or whether no improvements in the
average fitness value of the population have been found [10].

A partially mapped crossover (PMX) is used for the GA
because it is one of the best performing operators for a QAP
solution. The chromosome structure of the solution is shown
in Fig. 1. Facilities are placed in an array of locations. The
PMX copies a random segment from parent1 to the first child.
It looks for elements in that segment of parent2 that have not
been copied, starting from the initial crossover point. Foreach
of these elements, e.g.,i, PMX looks in the offspring to see what
elementj has been copied in its place from parent1, and placesi
into the position occupied byj in parent2 because we know thatj
will not be put there. If the position in the offspring occupied by
j in parent2 has already been filled byk, we puti in the position
occupied byk in parent2. The rest of the offsprings can be filled
from parent2, and the second child is created in a similar manner
[11].

Algorithm 1 Standard ant system
Pheromone trail is initialized
while stopping criterion is not metdo

for each ant in the colonydo
Construct a new solution with the current pheromone
trail
Construct an evaluation of the partial solution

end for
Update pheromone trail

end while

B. Fast Ant System

Ant colony optimization (ACO) was first proposed by Dorigo
to solve hard combinatorial problems [12]. It exploits a model
based on the real-life cooperation of self-organizing ants. Tail-
lard [13] proposed the fast ant system (FANT) for solving a
QAP by incorporating both diversification and intensification.
This improves the best solution up to the current execution

432 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGUST 2014

 Tabu search

 diversi�cate
Output

 Initialize seeds

Fig. 2. Stages of hybrid genetic multi-start tabu search algorithm.

time of the algorithm in a systematic way by clearing the
memory and reducing the weight of the best solution if the
process is stagnating. The ant process constructs new solutions
by randomly choosing the location of the facilities with a certain
probability. The solutions are then improved through a local
search and sent to the queen process. While implementing the
automatic intensification and diversification, the queen process
requires a parameter for managing the traces. The algorithmfor
a standard ant system is shown in Algorithm 1.

C. Robust Tabu Search

A robust tabu search (RTS) is a well-known optimization
algorithm for producing high-quality solutions [14]. It isa
variant of a simple TS algorithm. RTS starts with the steepest
descent algorithm, and makes up and down movements toward
the solution. A tabu list is kept to prevent backward movement
for a defined number of moves. RTS tries to evade the local
minimum values even when it finds a solution worse than the
previous one. It uses adaptive memory, and several of its variants
use intensification and diversification to obtain better solutions.
RTS has an adaptive tabu list size, which it reduces in order to
search near a local minimum, although it can also expand the
list size to evade this minimum.

Several aspiration criteria are defined to create exceptions to
the restrictions in RTS. RTS has short-term memory and does
not maintain the statistics of highly frequent solutions inthe way
that long-term memory algorithms do. The algorithm generates
new permutations by changing the previous allocations of two
facilities, which is called a two-way exchange, thereby saving
an important amount of execution time. The cost between the
old and new permutations is stored in a matrix. Instead of
calculating the cost for the whole permutation vector when
calculating the cost for a new permutation, these costs are added
to the total cost. Although backward movement is forbidden,
certain moves are exempt from this rule when they satisfy an
aspiration criterion. The tabu list keeps track of the forbidden
moves. There is also a parameter called the "total number of
failures," which defines the number of unsuccessful iterations
for terminating a search for a better solution. The RTS algorithm
is similar to Algorithm 2.

D. Hybrid Genetic Multi-Start Tabu Search Algorithm

The hybrid genetic multi-start tabu search algorithm (HG-
MTS) is a hybrid of a GA and multi-start RTS. HG-MTS is a
two-step algorithm consisting of a seed generation and TS di-
versification. Fig. 2 shows the stages of this particular algorithm.
The TS diversification phase uses the diversification operator of
a cooperative parallel tabu search [16]. After choosing a high-
quality seed, multi-start TS conducts a stepwise procedureto
determine the best diversification toward the solution.

Algorithm 2 Robust tabu search algorithm [14]
Authorized: If a move is not tabu, it is authorized.
Aspired: Allow tabu moves if they are decided to be interesting.
Tabu list: A list to forbid reverse move.
Neighbor: Each location in the permutation is considered as neighbor.
RTS (FLOW, DIST, MaxIter, BestPerm,

MinSize(<n×n/2), MaxSize(<n×n/2),
Aspiration(>n×n/2)) {

TABU_LIST = {};
CurCost = QAP_Cost(BestPerm);
CurSol = BestPerm;
Delta[i][j] = ComputeDelta();// i = 0..n, j = 0..n
TABU_LIST[i][j] = − (n×i+j); // i = 0...n-1, j = 0...n-1
for (iteration = 1; iteration< MaxIter; iteration++){

i_retained = infinite;
MinDelta = infinite;
Already_Aspired = false;
for each Neighbor (i, j){

current1 = TABU_LIST[i][CurSol[j]];
current2 = TABU_LIST[j][CurSol[i]];
Authorized = (current1< iteration)‖ (current2< iteration);
Aspired =

(current1< iteration-Aspiration)‖
(current2< iteration-Aspiration)‖
(CurCost + Delta[i][j]< BestCost);

if (Aspired && Already_Aspired)‖
(Aspired && Delta[i][j] < MinDelta) ‖
(!Aspired && !Already_Aspired && Delta[i][j] <
MinDelta && Authorized){
i_retained = i; j_retained = j;
MinDelta = Delta[i][j];
if (Aspired) Already_Aspired = true;

}}
if (i_retained != infinite){

SWAP(CurSol[i_retained], CurSol[j_retained]);
CurCost = CurCost + Delta[i_retained][j_retained];
TABU_LIST[i_retained][CurSol[j_retained]] =
iteration + getRandom(MinSize, MaxSize);
TABU_LIST[j_retained][CurSol[i_retained]] =
iteration + getRandom(MinSize, MaxSize);
if (CurCost< BestCost)

BestCost = CurCost;
}

UPDATE_MOVE_COSTS(FLOW, DIST, CurSol, Delta,
i, j, i_retained, j_retained);

}}

V. EXPERIMENTAL SETUP AND TEST RESULTS

A. Experimental Environment

We tested the proposed algorithms using a number of different
experiments. For each test, one of the parameters was varied
whereas the others were fixed. The algorithms were tested using
the same test data, which were generated based on the rules
defined in subsection B. The experiments were performed using
a 2.21 GHz AMD Athlon (TM)64 × 2 dual processor with
2 GB of RAM and MS Windows 7 (TM) operating system. The
implementation language used was C++. The test data were
generated according to the experimental environment described
by Adl and Rankoohi [7]. The only difference is that we chose a
unit cost in range of [0,1]. Our test data generator obtainedthe
number of fragmentsm, number of sitesn, and other parameters
as inputs, and created a random DAP instance.

We chose the fragment size randomly from the range [c/10,
20 × c/10], where c is a number between 10 and 1000.
The random choice of fragments is defined using a constraint
because a fragment should be placed at a site with a capacity
larger than the fragment size. We chose the site capacities in
[1, 2×m/n− 1]. The sum of the site capacities should be equal
to the total fragment sizem, wheren is the total number of
sites. We assumed that the number of sitesn is equal to the

TOSUN: DISTRIBUTED DATABASE DESIGN USING EVOLUTIONARY ALGORITHMS 433

Instance size

C
o

s
t

Fig. 3. Cost vs. instance size comparisons of the algorithms.

T
im

e
 (

s
)

Instance size

(s)

(s)

(s)

(s)

(s)

(s)

Fig. 4. Time vs. instance size comparisons of the algorithms.

number of fragmentsm. We selected the unit transmission costs
as a random number within the range of [0,1]. We generated
a random probability request per transaction (RT) to allow
each transaction to be requested at a site. Transaction fragment
dependency is also represented using the probability access per
fragment (AF). The site fragment frequency matrix,FREQ,
was determined as the multiplication of probabilityRT and a
random frequency of range [1, 1000]. A transaction fragment
dependency matrix is generated as a multiplication ofAF and a
uniformly distributed random value in [0,fj], with fj being the
jth fragment.

Finally, the site fragment dependency matrixSTFR is equal
to FREQ × TRFR. We define the inter-fragment dependency
matrix FRDEP as a multiplication of the matricesQFRl×m×m

and Ql×m×m, where QFR takes into account the execution
frequencies of the transactions andQ represents the indirect

Table 1. Genetic algorithm performance on DAP-20 instance.

Population Generation Cost Time (s)
250 50 2.655762 4.214
250 100 2.674170 7.777
250 150 2.715429 14.786
250 200 2.673403 15.171
250 250 2.666135 18.124
500 50 2.640902 15.451
500 100 2.660429 19.617
500 150 2.651025 35.112
500 200 2.649761 53.737
500 250 2.649985 76.297
750 50 2.653905 18.796
750 100 2.636911 49.153
750 150 2.646546 63.947
750 200 2.631491 117.159
750 250 2.648080 173.525

1,000 50 2.638806 27.666
1,000 100 2.630268 62.974
1,000 150 2.637986 84.13
1,000 200 2.629396 123.789
1,000 250 2.638621 253.896
1,250 50 2.639087 54.687
1,250 100 2.640549 83.482
1,250 150 2.640518 167.222
1,250 200 2.648000 148.553
1,250 250 2.629725 417.682

Table 2. Genetic algorithm performance on DAP-50 instance.

Population Generation Cost Time (s)
250 50 55.129698 17.581
250 100 55.330358 33.727
250 150 55.235938 55.411
250 200 55.116918 46.914
250 250 55.229595 66.79
500 50 54.946089 28.204
500 100 54.932897 79
500 150 54.833906 86.822
500 200 54.945268 123.973
500 250 54.908336 135.938
750 50 55.121281 41.009
750 100 54.889295 76.333
750 150 54.681993 143.941
750 200 54.650527 183.265
750 250 54.667462 224.648

1,000 50 55.002209 60.278
1,000 100 54.629883 154.437
1,000 150 54.627740 207.555
1,000 200 54.764319 471.978
1,000 250 54.995658 644.301
1,250 50 54.953858 90.265
1,250 100 54.783223 310.599
1,250 150 54.689684 359.574
1,250 200 54.651822 499.853
1,250 250 54.676825 460.665

434 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGUST 2014

Table 3. Genetic algorithm performance on DAP-100 instance.

Population Generation Cost Time (s)
250 50 440.608146 48.757
250 100 438.827255 117.298
250 150 439.988411 145.033
250 200 441.213326 181.507
250 250 438.959166 200.907
500 50 438.380273 91.566
500 100 437.361781 174.24
500 150 436.810249 333.716
500 200 438.871504 441.14
500 250 437.437210 493.093
750 50 439.058054 171.855
750 100 436.156120 317.021
750 150 436.641217 618.125
750 200 435.207238 943.319
750 250 435.592737 1,015.88

1,000 50 438.421608 216.33
1,000 100 436.734155 487.567
1,000 150 436.150353 568.726
1,000 200 436.194801 1,236.301
1,000 250 435.735532 1,463.757
1,250 50 438.726232 334.48
1,250 100 436.604972 688.081
1,250 150 434.451806 808.024
1,250 200 435.041686 1,079.677
1,250 250 435.406898 1,455.124

Table 4. Execution time comparison of algorithms for increasing DAP

instance sizes.

DAP Size ACO (s) RTS (s) GA1 (s) GA2 (s) GA3 (s) MTS (s)
5 9.26 0.83 76.27 56.11 88.11 1.44
10 14.52 2.73 87.80 60.37 94.91 2.45
15 13.74 5.66 90.76 66.22 104.13 2.65
20 17.91 8.89 123.79 84.13 167.22 4.17
25 25.86 14.52 131.98 81.96 125.30 5.21
30 31.17 20.89 132.46 104.64 137.02 7.38
35 43.31 29.06 150.06 111.87 151.02 10.73
40 56.59 37.05 166.80 128.75 173.21 15.60
45 80.92 48.67 191.93 159.10 202.10 20.80
50 105.33 62.74 471.98 207.56 359.57 26.80
55 126.00 76.07 268.31 201.43 261.71 27.22
60 166.55 91.79 315.31 208.37 290.46 39.56
65 204.35 109.20 421.93 284.08 336.01 48.92
70 320.62 131.54 536.15 344.20 358.03 63.13
75 309.51 155.31 609.77 379.07 380.81 73.41
80 396.18 193.63 464.17 331.17 416.18 87.84
85 807.43 195.80 532.05 364.71 586.21 102.79
90 621.55 215.58 563.15 400.37 531.13 123.19
95 725.93 250.72 629.55 974.24 569.92 143.16
100 1,203.99 278.63 1,236.30 568.73 808.82 179.07

transaction fragment dependency. We used almost the same
parameters as Adl and Rankoohi [7] to better understand the
performances of these algorithms in the literature.

B. Experimental Results

We performed several tests using a genetic algorithm to
set the appropriate parameters. We varied the population size
and number of generations to find the optimal running time
settings. We performed tests on threeDAP instances of sizes
20, 50, and 100. In addition, three configuration settings were
selected as GA1, GA2, and GA3 after the experiments shown
in Tables 1, 2, and 3. GA1 uses a population size of 1,000 and

Table 5. Cost comparison of algorithms for increasing DAP instance

sizes (cost value is column×10
6).

Size ACO RTS GA1 GA2 GA3 HG-MTS
5 0.04 0.04 0.04 0.04 0.04 0.04
10 0.31 0.31 0.32 0.31 0.31 0.31
15 0.98 0.98 0.99 0.98 0.98 0.98
20 2.61 2.61 2.63 2.64 2.64 2.61
25 5.19 5.19 5.25 5.26 5.24 5.19
30 10.27 10.27 10.39 10.42 10.41 10.27
35 16.39 16.39 16.64 16.61 16.66 16.39
40 25.91 25.90 26.28 26.33 26.21 25.92
45 37.28 37.26 37.73 37.80 37.82 37.27
50 53.93 53.89 54.76 54.63 54.69 53.88
55 71.30 71.19 72.72 72.40 72.13 71.21
60 90.35 90.16 91.76 91.49 91.56 90.20
65 112.31 112.13 113.59 113.75 113.84 112.08
70 146.41 146.19 148.48 148.80 148.18 146.15
75 177.90 177.70 180.04 180.75 180.63 177.65
80 219.40 219.26 223.10 222.80 222.96 219.18
85 262.24 261.88 267.04 266.15 266.19 261.99
90 316.11 315.86 320.88 320.93 320.58 315.86
95 370.14 369.92 375.49 375.85 375.29 369.91
100 428.40 428.28 436.19 436.15 434.45 427.98

200 generations. GA2 uses a population size of 1,250 and 200
generations. Finally, GA3 uses a population size of 1,250 and
150 generations. We determined experimentally that these are
the best performing parameters. Furthermore, these parameters
reflect a performance trade-off among the values because they
were chosen in such a way as to minimize the execution time
while showing near-optimal solutions.

We used FANT [13] with the parameterR = 5 for manag-
ing the traces and 20,000 iterations. In addition, we used as
the aspiration parameter a maximum of 200,000 failures and
(9× n)/10 and (11× n)/10 for the lower and upper limits
of the tabu list, respectively, wheren is the instance size. We
used a population size of 250, and 50 generations, for the initial
phase of HG-MTS. The diversification phase uses 1,000 for the
maximum number of failures, and(n× n)/10 and(11× n)/10
for the lower and upper limits of the tabu list, respectively. These
are the optimal parameters reported for both algorithms [13],
[14]. After completing the experiments on instances ranging
from a size of 5 to a size of 100, it was concluded that HG-MTS
outperforms the other algorithms in terms of both time and cost
measurements. Only RTS can achieve better results than HG-
MTS for a few instances. However, HG-MTS executes more
quickly than all of the other methods for all instances as shown
in Tables 4, 5, Figs. 3 and 4.

VI. CONCLUSIONS

In this paper, we introduced a new set of quadratic as-
signment optimization algorithms for designing a distributed
database using non-redundant data. We used a well-known
genetic algorithm, the fast ant system, and a robust tabu search
for the solutions of the data allocation problem. Furthermore,
we implemented a more efficient algorithm called HG-MTS
by running a modified version of the robust tabu search after
operating the genetic algorithm for a number of generations.
The main contributions of this work are modeling the problem
with using three prevailing algorithms, and the introduction of

TOSUN: DISTRIBUTED DATABASE DESIGN USING EVOLUTIONARY ALGORITHMS 435

the new tabu search based algorithm. In our experiments, the
execution times and optimality of the different versions ofthe
quadratic assignment problem algorithms were compared. HG-
MTS was shown to outperform the genetic algorithm, fast ant
system, and robust tabu search in terms of solution quality
and execution times for almost all cases for the data allocation
problem. It was observed that the robust tabu search and HG-
MTS algorithms outperform the other algorithms particularly
when the instance sizes increase. For the smaller instances, it is
also obvious that these algorithms obtain the optimal or near-
optimal solutions within shorter execution times. Currently,
these algorithms consider only one fragment per site. In real
life, there is more than one fragment to be considered for a
site. Replication is another issue to be dealt with in detail.
In the future, we plan to extend the proposed algorithm for
the replication and management of multiple fragments for a
site. Additionally, the originating sites for the queries and their
aspects can be considered to enhance the impact of the proposed
algorithms.

REFERENCES
[1] M. T. Ozsu and P. Valduriez,Principles of Distributed Database Systems,

Springer Publishing Company, 2011.
[2] Z.-J. Lee, S.-F. Su, C.-Y. Lee, and Y.-S. Hung, “A heuristic genetic

algorithm for solving resource allocation problems,”Knowledge and
Information Systems, vol. 5, no. 4, pp. 503–511, 2003.

[3] T. C. Koopmans and M. Beckmann, “Assignment problems andthe
location of economics activities,”Econometrica, vol. 25, no. 1, pp. 53–
76, 1957.

[4] X. Gu, W. Lin, and B. Veeravalli, “Practically realizable efficient data
allocation and replication strategies for distributed databases with buffer
constraints,”IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 9, pp. 1001–
1013, 2006.

[5] S. Ceri and G. Pelagatti,Distributed Databases Principles and Systems,
McGraw-Hill, NY: Springer, 1984.

[6] I. Ahmad and K. Karlapalem, “Evolutionary algorithms for allocating
data in distributed database systems,”Distributed and Parallel Databases,
vol. 11, no. 1, pp. 5–32, 2002.

[7] R. K. Adl and S. M. T. R. Rankoohi, “A new ant colony optimization based
algorithm for data allocation problem in distributed databases,”Knowledge
and Information Systems, vol. 21, no. 3, pp. 349–373, 2009.

[8] O. Frieder, H. T. Siegelmann, “Multiprocessor documentallocation: A
genetic algorithm approach,”IEEE Trans. Knowl. Data Eng., vol. 9, no. 4,
pp. 640–642, 1997.

[9] D. Goldberg,Genetic Algorithms in Search, Optimization, and Machine
Learning, MA: Addison-Wesley, 1989.

[10] U. Tosun, T. Dokeroglu, and A. Cosar, “A new robust island parallel
genetic algorithm for the quadratic assignment problem,”International J.
Production Research, vol. 51, no. 14., pp. 4117–4133, 2013.

[11] A. E. Eiben and J. E. Smith,Introduction to Evolutionary Computing,
Springer, 2003.

[12] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by a
colony of cooperating Agents,”IEEE Trans. Syst., Man, Cybern., Part B,
vol. 26, no. 1, pp. 29–41, 1996.

[13] E. D. Taillard, L. M. Gambardella, M. Gendreau, and J. Y.Potvin,
“Adaptive memory programming: A unifed iew of meta-heuristics,”
European J. Operational Research, vol. 135, no. 1, pp. 1–16, 2001.

[14] E. Taillard, “Robust taboo search for the quadratic assignment problem,”
Parallel Computing, vol. 17, no. 4–5, pp. 443-455, 1991.

[15] T. James, C. Rego, and F. Glover, “Multi-start tabu search and
diversification strategies for the quadratic assignment problem,” IEEE
Trans. Syst., Man, and Cybern., Part A, vol. 39, no. 3, pp. 579–596, 2009.

[16] T. James, C. Rego, and F. Glover, “A cooperative parallel tabu search
algorithm for the QAP,”European J. Operational Research, vol. 195,
no. 3, pp. 810–826, 2009.

Umut Tosun received his B.E. degree from Izmir
Institute of Technology, Izmir, Turkey in 2004, his
M.E. degree from Bilkent University, Ankara, Turkey
in 2007 and his Ph.D. from METU, Ankara, Turkey
in 2013, all in Computer Engineering. Between 2004
and 2013, he worked for Bilkent University, ASEL-
SAN Defence, Turkish Telecom, and Siemens Enter-
prise Communications. He is currently an Assistant
Professor in the Department of Computer Engineering
at Baskent University. His main interests are parallel
and distributed databases, computer networks, and

information security.

