430

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGBT 2014

Distributed Database Design using
Evolutionary Algorithms

Umut Tosun

Abstract: The performance of a distributed database system de-

pends particularly on the site-allocation of the fragments Queries
access different fragments among the sites, and an originag

site exists for each query. A data allocation algorithm shold

distribute the fragments to minimize the transfer and settement
costs of executing the query plans. The primary cost for a dat
allocation algorithm is the cost of the data transmission awss the
network. The data allocation problem in a distributed database is
NP-complete, and scalable evolutionary algorithms were deloped
to minimize the execution costs of the query plans. In this pger,

guadratic assignment problem heuristics were designed anidhple-

mented for the data allocation problem. The proposed algothms
find near-optimal solutions for the data allocation problem In

addition to the fast ant colony, robust tabu search, and gerte

algorithm solutions to this problem, we propose a fast and sdable
hybrid genetic multi-start tabu search algorithm that outp erforms

the other well-known heuristics in terms of execution time ad

solution quality.

Index Terms: Ant colony optimization, distributed database design,
hybrid algorithms, robust tabu search.

I. INTRODUCTION

The QAP was first presented by Koopmans and Beckman
[3]. A set of n facilities andn locations is maintained, and the
distances between locations are defined. A flow is defined for
the amount of supplies to be transferred between each pair of
facilities. The problem is assigning the facilities to diént
locations to minimize the flow between each pair multiplied
by the distance between their locations. The QAP can express
the dependence of the fragments and sites, where the fragmen
are considered to be facilities and the sites are considered
be locations. The flow between two facilities is the amount of
data transferred between two sites, and the distance betwee
locations is the cost of sending a data item between the te®. si

The remainder of this paper is organized as follows: Sedttion
describes an overview of both a DAP and a QAP. In Section I,
the mathematical formulation behind the modeling of a DAP
as a QAP is handled. Section IV presents the algorithms used.
The experimental environment is then described in Section V
Finally, Section VI provides some concluding remarks rdgay
this research.

Il. RELATED WORKS
A DAP can be solved using a static or dynamic allocation.

Fragmentation and data allocation [1] are the two mostailiti Static algorithms exploit the defined prerequisites, whaere
problems when designing distributed databases. Beforg thnamic algorithms adapt to the modifications [4]. DAPs and

are assigned to a site, the relations are mostly partition@APs have been widely studied by the database research com-
either horizontally or vertically. The replication of fragnts is munity. For example, Ceri and Plagatti proposed a greedy
another issue to consider during a design. The memory dgpacilgorithm for redundant and non-redundant data [5]. Ahmad
communication channels, and processing power are some ot Karlapalem [6] introduced a query-driven strategy. &t
design parameters. During the most-frequent queries, at@ dRankoohi [7], transformed a QAP formulation into a DAP, the
transferred between sites must be minimized, the localith® model of which handles the non-redundant allocation of data
related fragments must be maintained, and the data volupte kgith certain capacity constraints. Distributed databasen-m
on the site must be smaller than the memory size. agement system (DDBMS) queries access several tables and
A data allocation problem (DAP) is an optimization problenfragments over a network. A query is initialized from a sitad
with certain constraints [2]. For instance, the disk /Oeshe the major portion of the plan execution cost is from the estl
parallel query execution, network load, and load balanahg of fragments from different sites. Data allocation alguris
the servers are design parameters that need to be handledattdmpt to assign fragments to sites in such a manner that
DAP is an NP-complete problem regardless of these paraset@iinimizes the total cost of the data transfer while exegutin
The most significant factor contributing to the responsetoh user and/or application queries. DAP algorithms aim to find a
a query is the delay of a data transfer among sites. Therefasgtimal fragment-assignment solution while also takirtg ic-
most algorithms deal only with the delay of data to achievunt the replications, update costs, and average queygnss
acceptable execution times. A quadratic assignment problgmes.
(QAP) has some similarities with a DAP, and also keeps trackDifferent queries may share the same sub-tasks, and the
of the resource locality. same queries may be issued from different originating sites
A DDBMS design is a problem with a set of multiple ob-
jectives including the efficient usage of computer storagg a
processing resources, and a minimization of the query respo
times, while taking care not to violate the constraints reuey
the site capacity. It is necessary to model the problem in a
way that satisfies all of these criteria. Several algoritHors

1229-2370/14/$10.0q0) 2014 KICS

Manuscript received on April 13, 2014.

The author is with the Department of Computer Engineeriraggk@nt Univer-
sity, Baglica Kampusu, Eskisehir Yolu 20. km 06530 Ankat3RKIYE, Tel:
+(90)312 2462099, Fax: (+90)312 246 66 60, email: utosurs&drd.edu.tr.

Digital object identifier 10.1109/JCN.2014.000073

TOSUN: DISTRIBUTED DATABASE DESIGN USING EVOLUTIONARY AL@®RITHMS 431

data allocation and data fragmentation problems in digteit L, ’ | 2 | 3 | 1 | 5 | 6 | | | |
databases have been proposed in the literature. Techrigsed
on genetic algorithms (GAs) have been used by Frieder (4[2]s]1]s]6]9]7]8]
Siegelmann [8]. However, their formulations do not conside
the site capacities or replication of fragments and/oremib
improve the query response times. Ahmad [6] proposed tkq
use of a GA, simulated annealing, and mean field anneaJ 2‘ 8 | 3 | ? | 6 | 4 | ! l > l ! l
solutions, where non-redundant data (i.e., replications)e

not considered. Adl [7] proposed an ant colony heuristid an

modeled the DAP as a QAP; however, the update and replication Fig. 1. Stages of PMX crossover.
costs are not handled in this work.

“ a2 31 s o[4]]

— [a[2[3[1[s]e[o4]7]

IV. PROPOSED ALGORITHMS FOR THE DATA
Ill. SOLUTION FORMULATION WITH QUADRATIC ALLOCATION PROBLEM
ASSIGNMENT OPTIMIZATION A. Genetic Algorithm

_The data allocation cost can be represented as the sum Qtas exploit the selection, crossover, and mutation opera-
direct and indirect transaction-fragment dependenci&sA7 tions on an initial randomly chosen population. They create
transactiortand fragment have a direct dependency if the dat@ew generations, and a fitness function exists to find the best
from the container site df are transmitted for every executiongjviduals within the population [9]. The termination aiition
of t. There is an indirect dependency if the data need t0 Reyy pe defined depending on the total execution time, number
transmitted to a site other than from where the transactigfl generations produced, or whether no improvements in the
originates. The data allocation cost is expressed as theo!’;un&verage fitness value of the population have been found [10].

costsCst1 andCst2, as described in (1). A partially mapped crossover (PMX) is used for the GA
because it is one of the best performing operators for a QAP
Cst(®) = Cstl(D) + Cst2(P). (1) solution. The chromosome structure of the solution is shown

in Fig. 1. Facilities are placed in an array of locations. The
Here, Cstl is the multiplication of two matricesSTFR and PMX copies a random segment from parentl to the first child.

UC, whereSTFR is the site fragment dependency matrix anft looks for elements in that segment of parent2 that have not
UC is the unit communication matriXJC holds the network been copied, starting from the initial crossover point. Each
communication costs among the sitésis anmelement vector of these elements, e.gd, PMX looks in the offspring to see what
and®; represents the site whefeis stored. Partial cost matrix elemenf has been copied in its place from parent1, and places
PCST1,,x, is the cost of fragmenf; to be stored in sitg;. into the position occupied byin parent2 because we know that
The unit partial cost matrix is represented in (2). will not be put there. If the position in the offspring occadiby

j in parent2 has already been filled kywe puti in the position

" occupied by in parent2. The rest of the offsprings can be filled
pestly; = Z uciq X stfry;. (2) from parent2, and the second child is created in a similamaan
4=1 [11].

The unit partial cospestl,;, for eachi andj is calculated,

andCst1 is expressed through (3). Algorithm 1 Standard ant system

Pheromone trail is initialized
while stopping criterion is not meto

m
Cstl1(®) = chsﬂq)j_ (3) for each ant in the colongo
=1 ! Construct a new solution with the current pheromone
trail
An inter-fragment dependency matrikRDEP) is the mul- Construct an evaluation of the partial solution
tiplication of the matricesQF'R;.,,xm and Qixmxm The end for

execution frequencies of the transactions are represdnted Update pheromone trail
the matrix QFR which is multiplied with matrixQ to obtain end while

the FRDEP matrix of the inter-fragment dependencies. The
indirect transaction-fragment dependency is shown thidpg
The indirect transaction-fragment dependency €@s® is a B Fast Ant System
form of QAP and is represented in (4).

Ant colony optimization (ACO) was first proposed by Dorigo

m m to solve hard combinatorial problems [12]. It exploits a rlod
C'st2(®) = Z Z frdep; . X uce.1e,9. (4) based on the real-life cooperation of self-organizing .afiésl-
= L o lard [13] proposed the fast ant system (FANT) for solving a

QAP by incorporating both diversification and intensifioati
This improves the best solution up to the current execution

432 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGBT 2014

Algorithm 2 Robust tabu search algorithm [14]
) Tabu search Authorized: If a move is not tabu, it is authorized.
diversificate —) Output Aspired: Allow tabu moves if they are decided to be interesting.
Tabu list: A list to forbid reverse move.

Initialize seeds Neighbor: Each location in the permutation is considered as neighbor.
RTS (FLOW, DIST, Maxlter, BestPerm,
Fig. 2. Stages of hybrid genetic multi-start tabu search algorithm. MinSize(<nxn/2), MaxSize&nxn/2),
Aspiration(>nxn/2)) {
TABU_LIST = {};

. CurCost = QAP_ Cost BestPerm);
time of the algorithm in a systematic way by clearing the mrsm:ggstpgrm; ()

memory and reducing the weight of the best solution if thePeltalillil = ComputeDelta()// i =0..n,j=0..n

. . . TABU_LIST[i][] = — (nxi+)); /i=0...n-1,j=0...n-1
process is stagnating. The ant process constructs NeVIOSISIUt . icration = 1. iterationc Maxlter: iteration++){
by randomly choosing the location of the facilities with ata& i_retained = infinite;
probability. The solutions are then improved through a lloca Jiieaqy Aspred - faise:
search and sent to the queen process. While implementing the for each Neighbor (i, j{

automatic intensification and diversification, the queestpss curent? = ﬁgﬂzt:gm{gﬂgglﬁﬂ

requires a parameter for managing the traces. The algoféhm Authorized = (current iteration)|| (current2< iteration);
a standard ant system is shown in Algorithm 1. Aspired = N o

(currentl< iteration-Aspiration)f

(current2< iteration-Aspirationf
C. Robust Tabu Search (CurCost + Delta[i][j] < BestCost);

if (Aspired && Already_Aspired)||
A robust tabu search (RTS) is a well-known optimization ('A:piredd%%?i:ta[igj] ZMin%egg)ltl) il

algorithm for producing high-quality solutions [14]. It is _,(\',”nsggﬁa &&.A_u{ﬁgr‘i;’e—d;p."e eltaiji] <
variant of a simple TS algorithm. RTS starts with the steepes i_retained =i; | retained = j;

descent algorithm, and makes up and down movements toward QAEZES::Z‘J) Rﬁgig]&”gspired - true:
the solution. A tabu list is kept to prevent backward moveimen -

}
if (i_retained != infinite){

for a defined number of moves. RTS trles.to evade the local SWAP(CurSol[i_retained], CurSol[j_retained]);

minimum values even when it finds a solution worse than the CurCost = CurCost + Delta]i_retained][j_retained];
; ; ; TABU_LISTJi_retained][CurSol[j_retained]] =

previous one. It.uses adaptwe_r_nemory, and s_everal of |Fanxar iteration + getRandom(MinSize, MaxSize);

use intensification and diversification to obtain betteusohs. TABU_LISTIj_retained][CurSol[i_retained]] =

RTS has an adaptive tabu list size, which it reduces in oler t :}?@S?&;tftggg%@é“"'”S'Zev MaxSize);

search near a local minimum, although it can also expand the BestCost = CurCost;

list size to evade this minimum. _ UPDATE_MOVE_COSTS(FLOW, DIST, CurSol, Delta,
Several aspiration criteria are defined to create excepton i, j, i_retained, j_retained);

the restrictions in RTS. RTS has short-term memory and doed

not maintain the statistics of highly frequent solutionthie way

that long-term memory algorithms do. The algorithm geresrat

new permutations by changing the previous allocations of tw V. EXPERIMENTAL SETUP AND TEST RESULTS
facilities, which is called a two-way exchange, therebyirsgv A. Experimental Environment

an important amount of execution time. The cost between theW . . .
. : . . e tested the proposed algorithms using a number of differen
old and new permutations is stored in a matrix. Instead of

calculating the cost for the whole permutation vector Wheenxperlments. For each test, one of the parameters was varied

calculating the cost for a new permutation, these costsdateda mzegzarj;ht(z;ﬂ:g; Warﬁéﬁﬁé;he::%?gzzgnz::ers tgr?t?r?eui:les
to the total cost. Although backward movement is forbidde ' 9

. . : fined in subsection B. The experiments were performedjusin
certain moves are exempt from this rule when they satisfy gﬁ -
aspiration criterion. The tabu list keeps track of the fddgn a 2.21 GHz AMD Athlon (TM)64 x 2 dual processor with

moves. There is also a parameter called the "total number.zo?B of RAM and MS Windows 7 (TM) operating system. The

. i ++
failures," which defines the number of unsuccessful itersti implementation language used was C++. The test data were

for terminating a search for a better solution. The RTS étigar ger;\edrla ti‘; %Ccr?lzdmrﬁ t(; tf}lfehexprﬁrlgi?fntralnenvilr(iﬂnlwt mﬁ‘br
is similar to Algorithm 2. y a ankoohi[7]. The only difference is that we chose a

unit cost in range of [0,1]. Our test data generator obtathed
number of fragments), number of sites, and other parameters
as inputs, and created a random DAP instance.

The hybrid genetic multi-start tabu search algorithm (HG- We chose the fragment size randomly from the range(,
MTS) is a hybrid of a GA and multi-start RTS. HG-MTS is &0 x ¢/10], where ¢ is a number between 10 and 1000.
two-step algorithm consisting of a seed generation and TS d@he random choice of fragments is defined using a constraint
versification. Fig. 2 shows the stages of this particulandlgm. because a fragment should be placed at a site with a capacity
The TS diversification phase uses the diversification opeddt larger than the fragment size. We chose the site capadaities i
a cooperative parallel tabu search [16]. After choosingg@hi [1,2 x m/n — 1]. The sum of the site capacities should be equal
quality seed, multi-start TS conducts a stepwise procettureto the total fragment sizen, wheren is the total number of
determine the best diversification toward the solution. sites. We assumed that the number of sites equal to the

D. Hybrid Genetic Multi-Start Tabu Search Algorithm

TOSUN: DISTRIBUTED DATABASE DESIGN USING EVOLUTIONARY AL@®RITHMS

450 4

400 1 waco
350 | MRTS
GAL
300 1 ggaz
_ 250 | WGA3
3 " HG-MTS
o

200

150 -

100 A

50

|I||
MM RNIBNINRNBBRLNIS R

Instance size

100

Fig. 3. Cost vs. instance size comparisons of the algorithms.

1.200

1.000 -

800 -

600 -

Time (s)

400 -

200 -

0 20 40 60 80 100
Instance size

Fig. 4. Time vs. instance size comparisons of the algorithms.

number of fragments. We selected the unit transmission costs
as a random number within the range of [0,1]. We generated
a random probability request per transactid®T) to allow
each transaction to be requested at a site. Transactiomératg
dependency is also represented using the probability supezs
fragment AF). The site fragment frequency matriREQ,
was determined as the multiplication of probabilRy and a
random frequency of range [1, 1000]. A transaction fragment
dependency matrix is generated as a multiplicatioAfind a
uniformly distributed random value in [§;], with f; being the
jth fragment.

Finally, the site fragment dependency mat8k-R is equal
to FREQ x TRFR. We define the inter-fragment dependency
matrix FRDEP as a multiplication of the matrice3F R, ., x.m
and Q;xmxm, Where QFR takes into account the execution
frequencies of the transactions a@drepresents the indirect

Table 1. Genetic algorithm performance on DAP-20 instance.

Population | Generation Cost Time (s)
250 50 2.655762| 4.214
250 100 2.674170| 7.777
250 150 2.715429| 14.786
250 200 2.673403| 15.171
250 250 2.666135| 18.124
500 50 2.640902| 15.451
500 100 2.660429| 19.617
500 150 2.651025| 35.112
500 200 2.649761| 53.737
500 250 2.649985| 76.297
750 50 2.653905| 18.796
750 100 2.636911| 49.153
750 150 2.646546| 63.947
750 200 2.631491| 117.159
750 250 2.648080| 173.525

1,000 50 2.638806| 27.666
1,000 100 2.630268| 62.974
1,000 150 2.637986| 84.13
1,000 200 2.629396| 123.789
1,000 250 2.638621| 253.896
1,250 50 2.639087| 54.687
1,250 100 2.640549| 83.482
1,250 150 2.640518| 167.222
1,250 200 2.648000| 148.553
1,250 250 2.629725| 417.682

Table 2. Genetic algorithm performance on DAP-50 instance.

Population | Generation Cost Time (s)
250 50 55.129698 17.581
250 100 55.330358 33.727
250 150 55.235938 55.411
250 200 55.116918| 46.914
250 250 55.229595| 66.79
500 50 54.946089 28.204
500 100 54.932897 79
500 150 54.833906| 86.822
500 200 54.945268| 123.973
500 250 54.908336| 135.938
750 50 55.121281 41.009
750 100 54.889295 76.333
750 150 54.681993| 143.941
750 200 54.650527| 183.265
750 250 54.667462| 224.648
1,000 50 55.002209| 60.278
1,000 100 54.629883| 154.437
1,000 150 54.627740| 207.555
1,000 200 54.764319| 471.978
1,000 250 54.995658| 644.301
1,250 50 54.953858 90.265
1,250 100 54.783223| 310.599
1,250 150 54.689684| 359.574
1,250 200 54.651822| 499.853
1,250 250 54.676825| 460.665

433

434 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGBT 2014

Table 3. Genetic algorithm performance on DAP-100 instance. Table 5. Cost comparison of algorithms for increasing DAP instance
Population | Generation Cost Time (s) sizes (cost value is columnx10°%).
250 50 440.608146] 48.757 Size[ACO [RTS [GAL [GA2 [GA3 [HG-MTS
250 100 438.827255 117.298 5 1004 1004 004 1004 | 004 1004
250 150 439.988411 145.033 101031) 031 1032 1031 1031 031
15 | 098 |098 |099 |098 |098 |0.98
250 200 441.213326| 181.507 20 | 261 | 261 | 263 |264 |264 |261
250 250 438.959166/ 200.907 25 |519 |519 |525 |526 |524 |5.19
500 50 438.380273 91.566 30 |10.27 | 10.27 | 10.39 | 10.42 | 10.41 | 10.27
500 100 437.361781 174.24 35 |16.39 | 16.39 | 16.64 | 16.61 | 16.66 | 16.39
500 150 436.810249 333.716 40 2591 | 25.90 | 26.28 | 26.33 | 26.21 | 25.92
45 | 37.28 | 37.26 | 37.73 | 37.80 | 37.82 | 37.27
200 200 438.871504 441.14 50 | 53.93 | 53.89 | 54.76 | 54.63 | 54.69 | 53.88
500 250 437.437210 493.093 55 |71.30 | 7119 | 72.72 | 72.40 | 72.13 | 71.21
750 50 439.058054 171.855 60 | 90.35 | 90.16 | 91.76 | 91.49 | 91.56 | 90.20
750 100 436.156120| 317.021 65 | 112.31| 112.13| 113.59| 113.75| 113.84| 112.08
750 150 436.641217] 618.125 70 146.41| 146.19| 148.48| 148.80| 148.18| 146.15
75 | 177.90| 177.70| 180.04| 180.75| 180.63| 177.65
;28 ;gg jggég;ggg fA(f)B:LE?}%% 80 | 219.40| 219.26| 223.10| 222.80| 222.96| 219.18
: V4. 85 | 262.24| 261.88| 267.04| 266.15| 266.19| 261.99
1,000 50 438.421608 216.33 90 | 316.11| 315.86| 320.88| 320.93| 320.58| 315.86
1,000 100 436.734155| 487.567 95 | 370.14| 369.92| 375.49| 375.85| 375.29| 369.91
1,000 150 436.150353| 568.726 100 | 428.40| 428.28| 436.19| 436.15| 434.45| 427.98
1,000 200 436.194801| 1,236.301
1,000 250 435.735532 1,463.757 200 generations. GA2 uses a population size of 1,250 and 200
1,250 50 438.726232] 334.48 generations. Finally, GA3 uses a population size of 1,250 an
1,250 100 436.604972 688.081 150 generations. We determined experimentally that these a
1,250 150 434.4518061 808.024 the best performing parameters. Furthermore, these p&gesne
1,250 200 435.041686 1,079.677 reflect a performance trade-off among the values becauge the
1,250 250 435.406898 1,455.124 were chosen in such a way as to minimize the execution time
while showing near-optimal solutions.
Table 4. Execution time comparison of algorithms for increasing DAP We used FANT [13] with the parametét = 5 for manag-
instance sizes. ing the traces and 20,000 iterations. In addition, we used as
DAP Size | ACO (s) | RTS (s) | GAL(s) | GA2 (s) | GA3 (s) | MTS (s) the aspiration parameter a maximum of 200,000 failures and
% Vel B GO IS B S ol o (9 xn)/10 and (11 x n)/10 for the lower and upper limits
15 13.74 | 566 | 9076 |6622 |104.13 | 2.65 of the tabu list, respectively, whereis the instance size. We
20 17.91 1889 | 12379 | 8413 |167.22 | 417 used a population size of 250, and 50 generations, for thialini
53 ;ifs ;3;:5 12;;22 %f& 153;’;‘2 3;5; phase of HG-MTS. The diversification phase uses 1,000 for the
35 4331 | 29.06 |150.06 | 111.87 | 151.02 | 10.73 maximum number of failures, arf@ x n)/10and(11 x n)/10
P oy | ST05 | 1oo80 | 128 TE | SIS A | e for the lower and upper limits of the tabu list, respectivdlese
50 105.33 | 62.74 | 471.98 | 207.56 | 359.57 | 26.80 are the optimal parameters reported for both algorithm$, [13
55 126.00 | 76.07 | 268.31 | 20143 | 261.71 | 27.22 [14]. After completing the experiments on instances raggin
22 232322 %'97_20 i;ijgé 333;3; iigjéf 22332 from a size of 5 to a size of 100, it was concluded that HG-MTS
70 320.62 | 131.54 | 536.15 | 344.20 | 358.03 | 63.13 outperforms the other algorithms in terms of both time arst co
75 309.51 155.31 | 609.77 | 379.07 | 380.81 | 73.41 .
80 29618 | 193.63 | 46417 | 33117 | 416.18 | 87.84 measurements. Only RTS can achieve better results than HG-
85 807.43 | 195.80 | 532.05 | 364.71 | 586.21 | 102.79 MTS for a few instances. However, HG-MTS executes more
o O | 2ao58 | 20315 | 40037 | 33108 | 12319 quickly than all of the other methods for all instances assho
100 1,203.99| 278.63 | 1,236.30| 568.73 | 808.82 | 179.07 in Tables 4, 5, Figs. 3 and 4.

transaction fragment dependency. We used almost the same
parameters as Adl and Rankoohi [7] to better understand the VI. CONCLUSIONS

performances of these algorithms in the literature. In this paper, we introduced a new set of quadratic as-
signment optimization algorithms for designing a disttéal
database using non-redundant data. We used a well-known

We performed several tests using a genetic algorithm genetic algorithm, the fast ant system, and a robust tabalsea
set the appropriate parameters. We varied the populatien dor the solutions of the data allocation problem. Furtheneno
and number of generations to find the optimal running timge implemented a more efficient algorithm called HG-MTS
settings. We performed tests on thiBAP instances of sizes by running a modified version of the robust tabu search after
20, 50, and 100. In addition, three configuration settingeeweoperating the genetic algorithm for a number of generations
selected as GA1l, GA2, and GAS3 after the experiments showhe main contributions of this work are modeling the problem
in Tables 1, 2, and 3. GA1 uses a population size of 1,000 awnith using three prevailing algorithms, and the introdoistof

B. Experimental Results

TOSUN: DISTRIBUTED DATABASE DESIGN USING EVOLUTIONARY AL@®RITHMS

the new tabu search based algorithm. In our experiments, the

execution times and optimality of the different versionsiu#
guadratic assignment problem algorithms were compared.

MTS was shown to outperform the genetic algorithm, fast ant
system, and robust tabu search in terms of solution qual
and execution times for almost all cases for the data ailmtat
problem. It was observed that the robust tabu search and H®}
MTS algorithms outperform the other algorithms particiylar
when the instance sizes increase. For the smaller instahes [17)
also obvious that these algorithms obtain the optimal or-nea
optimal solutions within shorter execution times. Curhgnt [12]

435

R. K. Adland S. M. T. R. Rankoohi, “A new ant colony optiration based
algorithm for data allocation problem in distributed datsés, Knowledge
and Information Systems, vol. 21, no. 3, pp. 349-373, 2009.

O. Frieder, H. T. Siegelmann, “Multiprocessor documatibcation: A
genetic algorithm approach EEE Trans. Knowl. Data Eng., vol. 9, no. 4,
pp. 640-642, 1997.

D. Goldberg,Genetic Algorithms in Search, Optimization, and Machine
Learning, MA: Addison-Wesley, 1989.

U. Tosun, T. Dokeroglu, and A. Cosar, “A new robust islaparallel
genetic algorithm for the quadratic assignment probldmtgrnational J.
Production Research, vol. 51, no. 14., pp. 4117-4133, 2013.

A. E. Eiben and J. E. Smithntroduction to Evolutionary Computing,
Springer, 2003.

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Qiization by a
colony of cooperating Agents/EEE Trans. Syst., Man, Cybern., Part B,

these algorithms consider only one fragment per site. lh rea vol. 26, no. 1, pp. 29-41, 1996.

life, there is more than one fragment to be considered forl1&l
site. Replication is another issue to be dealt with in detalil
In the future, we plan to extend the proposed algorithm fois)

the replication and management of multiple fragments for a :
15] T. James, C. Rego, and F. Glover, “Multi-start tabu ceaand

site. Additionally, the originating sites for the querigslaheir

aspects can be considered to enhance the impact of the prbpos

algorithms.

REFERENCES

[1] M. T. Ozsu and P. Valdurie®rinciples of Distributed Database Systems,
Springer Publishing Company, 2011.

[2] Z.-J. Lee, S.-F. Su, C.-Y. Lee, and Y.-S. Hung, “A heucisgenetic
algorithm for solving resource allocation problemds¢howledge and
Information Systems, vol. 5, no. 4, pp. 503-511, 2003.

[3] T. C. Koopmans and M. Beckmann, “Assignment problems &mel
location of economics activities EFconometrica, vol. 25, no. 1, pp. 53—
76, 1957.

[4] X. Gu, W. Lin, and B. Veeravalli, “Practically realizablefficient data
allocation and replication strategies for distributedatbases with buffer

constraints,|EEE Trans. Parallel Distrib. Syst., vol. 17, no. 9, pp. 1001-

1013, 2006.

[5] S. Ceri and G. PelagattDistributed Databases Principles and Systems,
McGraw-Hill, NY: Springer, 1984.

[6] 1. Ahmad and K. Karlapalem, “Evolutionary algorithmsrfallocating
data in distributed database systenmgtributed and Parallel Databases,
vol. 11, no. 1, pp. 5-32, 2002.

E. D. Taillard, L. M. Gambardella, M. Gendreau, and J.P6tvin,

“Adaptive memory programming: A unifed iew of meta-heudsf’

European J. Operational Research, vol. 135, no. 1, pp. 1-16, 2001.

E. Taillard, “Robust taboo search for the quadratidgssent problem,”
Parallel Computing, vol. 17, no. 4-5, pp. 443-455, 1991.

diversification strategies for the quadratic assignmenblem,” |IEEE
Trans. Syst., Man, and Cybern., Part A, vol. 39, no. 3, pp. 579-596, 2009.
T. James, C. Rego, and F. Glover, “A cooperative pdraédlbu search
algorithm for the QAP,"European J. Operational Research, vol. 195,
no. 3, pp. 810-826, 2009.

Umut Tosun received his B.E. degree from Izmir
Institute of Technology, Izmir, Turkey in 2004, his
M.E. degree from Bilkent University, Ankara, Turkey
in 2007 and his Ph.D. from METU, Ankara, Turkey
in 2013, all in Computer Engineering. Between 2004
and 2013, he worked for Bilkent University, ASEL-
SAN Defence, Turkish Telecom, and Siemens Enter-
prise Communications. He is currently an Assistant
Professor in the Department of Computer Engineering
at Baskent University. His main interests are parallel
and distributed databases, computer networks, and

information security.

