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Formal Modeling and Verification of an Enhanced Variant
of the IEEE 802.11 CSMA/CA Protocol

Youcef Hammal, Jalel Ben-Othman, Lynda Mokdad, and Abdelkrim Abdelli

Abstract: In this paper, we present a formal method for modeling
and checking an enhanced version of the carrier sense multiple ac-
cess with collision avoidance protocol related to the IEEE 802.11
MAC layer, which has been proposed as the standard protocol for
wireless local area networks. We deal mainly with the distributed
coordination function (DCF) procedure of this protocol throughout
a sequence of transformation steps. First, we use the unifiedmodel-
ing language state machines to thoroughly capture the behavior of
wireless stations implementing a DCF, and then translate them into
the input language of the UPPAAL model checking tool, which is
a network of communicating timed automata. Finally, we proceed
by checking of some of the safety and liveness properties, such as
deadlock-freedom, using this tool.

Index Terms: Carrier sense multiple access with collision avoid-
ance, formal modeling, IEEE 802.11, model checking, unifiedmod-
eling language state machines, UPPAAL.

I. INTRODUCTION

The IEEE 802.11 standard specifies the physical and data lay-
ers for implementing wireless local area network (WLAN) com-
munication. The data link layer itself is composed of two sub-
layers:
• A medium access control (MAC) layer that controls the access

to the support (through the physical layer) and shares band-
width between devices;

• A logical link control layer that acts as an interface between
the MAC sublayer and the IEEE 802.11 upper layer (network
layer).
The IEEE 802.11 standard offers various physical layer im-

plementations, each of which corresponds to a kind of technol-
ogy that has been commonly used to implement WLAN sys-
tems. However, the MAC layer is the same for each implemen-
tation, i.e., it defines the exact operation of the carrier sense
multiple access with collision avoidance (CSMA/CA) protocol.
Since it is impossible to detect collisions during a transmission
in wireless communication, we use the CSMA/CA protocol in-
stead of the carrier sense multiple access with collision detection
(CSMA/CD)1 protocol in such a manner that, before a packet
transmission, the nodes (i.e., wireless stations) have to listen to
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1The CSMA/CD protocol is not used in wireless networks because a mobile

node cannot both transmit and receive at the same time.

the transmission channel (henceforth referred to as a wireless
medium) to determine whether other nodes are transmitting.If
the medium is sensed asfree for a specified amount of time,
the node is allowed to begin its transmission. However, if the
medium is sensed asbusy, the node defers its transmission for
a random period of time, called a backoff period. The receiving
node sends an acknowledge packet (ACK) after waiting for a
specified amount of time once the packet is received. If an ACK
is not received, the packet is considered lost and a retransmis-
sion is arranged.

Note that the IEEE 802.11 MAC protocol defines two forms
of medium access: a distributed coordination function (DCF)
and a point coordination function (PCF). A DCF is based on the
CSMA/CA protocol for sharing access to a wireless medium. A
node listens to the medium before a transmission to determine
whether someone else is transmitting. Collision detectionis not
used because a node cannot to hear the medium and transmit
simultaneously. In addition to the DCF access method, an op-
tional PCF extension is used, in which nodes in a basic service
set (BSS)2 are polled by the access point, providing an access
warranty exists for delay-sensitive applications.

This paper deals with the use of formal methods for model-
ing and analyzing an enhanced version [1] of the CSMA/CA
protocol’s DCF mode, in which each station has to disconnect
whenever its signal-to-noise ratio (SNR) is lower than a certain
threshold. Such disconnections are intended to reduce the num-
ber of collisions and improve the transmission rate. We start by
building unified modeling language (UML) state machines [2]to
thoroughly capture the behavior of wireless stations implement-
ing the DCF, and then translate them into communicating timed
automata that are used as the input language of the UPPAAL
model-checking tool [3]. Some safety and liveness properties,
such as the absence of a deadlock and the successful termina-
tion of a transmission, are checked using this tool .

Note that the technique of model checking [4] has become
a valuable alternative to simulations and testing, which are in-
tended to explore only some of the possible behaviors and sce-
narios of a system, leaving open the question of whether unex-
plored trajectories may contain a fatal bug. Moreover, we chose
the use of model checking over other formal methods because it
is fully automatic and allows the desired behavioral properties
of the enhanced protocol to be checked upon its model through
an exhaustive enumeration of all states reachable by the system,
as well as the behaviors that traverse through these states.When
a design fails to satisfy a desired property, the model checking
process always produces a counterexample which demonstrates
a behavior that falsifies the property. This faulty trace provides

2A BSS is a collection of nodes that have recognized each otherand estab-
lished a communication.
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priceless insight into our understanding of the real reasonfor the
failure, as well as important clues for fixing the problem.

To the best of our knowledge, this paper is the first to propose
a formal approach covering all steps for the modeling and check-
ing of the CSMA/CA protocol. We use state machines to capture
the abstract behavior of the protocol components and translate
them into timed automata. The UPPAAL model checker is then
fed with the resulting diagrams along with temporal logic for-
mulas specifying the properties we want to check. In fact, de-
spite the advantages of formal methods, only few works similar
to our own have undertaken such a formal approach to analyzing
the CSMA/CA protocol family; however, even these works have
resulted in many different limitations. For instance, the authors
in [5] provided a reduced description of the DCF protocol of the
IEEE 802.11 standard using finite state machines, and then man-
ually analyzed the models to formally prove that the protocol is
free from deadlocks and non-executable transitions. Probabilis-
tic model-checking techniques were used in [6] and [7] for a per-
formance evaluation of various CSMA/CA protocols. The for-
mer work analyzes medium access control for sensor networks
built on top of the IEEE 802.11 standard. First, Markovian mod-
els are built and then analyzed using the PRISM tool, where the
properties are specified in probabilistic computation treelogic
(CTL). The latter paper models the DCF procedure into prob-
abilistic timed automata. The model is then translated intoa
finite-state Markov decision process, which is verified using the
PRISM tool.

The remainder of the present paper is organized as follows:
Section II presents the enhancements brought about by the new
variant [1] of the CSMA/CA protocol, and Section III describes
the modeling of the CSMA/CA protocol components using
UML state machines. Next, in Section IV, we present timed au-
tomata that constitute the input language of the UPPAAL model
checker and explain how previous state machines are trans-
lated into these timed automata. In Section V, we present var-
ious properties in terms of the CTL formulae that the UPPAAL
checks against the protocol model. Finally, in Section VI, we
provide some concluding remarks along with some future direc-
tions for our research.

II. ENHANCEMENTS OF THE NEW VARIANT OF THE
CSMA/CA PROTOCOL

A quality-of-service (QoS) guarantee for wireless networks
is hard to achieve because of the specific characteristics ofthis
type of network. For instance, the radio-link vulnerability at-
tributed to effects such as noise, interference, free-space loss,
shadowing, and multipath fading have to be considered. How-
ever, MAC protocols developed for these networks do not take
these perturbations into account, and most QoS solutions pro-
posed thus far have been limited to the MAC layer and do not
exploit information that other layers can provide [8], [9].More-
over, it was shown that 802.11 suffers from what has been called
an "802.11 anomaly" [8]–[10], which has two aspects: Through-
puts of all nodes in a 802.11 network fall to the lower level re-
lated to the worst node among them, and the bandwidth is di-
vided by the number of mobile nodes connected to the network.

Thus, to overcome this 802.11 anomaly and improve the qual-

ity of service of a BSS, cross-layer approaches have been devel-
oped [1], [11], [12]. Such approaches are based particularly on
information given by the physical layer, some of which comprise
basic parameters to ensure a good QoS [13]. In the current pa-
per, we deal with the issue of correctness of the new CSMA/CA
protocol variant [1], which also proposed a new cross-layer
scheme called adaptive multi-services cross-layer MAC (AM-
CLM). The goal of this protocol is to improve the QoS of mobile
nodes connected in a BSS through a temporary disassociation
of those nodes whose SNR is under a defined threshold. In this
way, the network’s throughput is improved. This new approach
aims to improve the QoS of a global network through unselfish
decisions of the nodes. In [1] the authors demonstrated the ben-
efit of their method by conducting a performance evaluation of
the protocol. For this purpose, they built a discrete Markovchain
associated with the behavior of the AMCLM protocol and then
analyzed the throughput of the nodes connected to the BSS. The
authors computed the throughput saturation and showed thatthe
saturation is much better with the AMCLM protocol than with
the CSMA/CA protocol [1].

To check the correctness of the AMCLM protocol, we use a
formal method for proving that the new variant of CSMA/CA
is deadlock-free and satisfies the safety and other reachabil-
ity and liveness properties. These properties are rigorously ex-
pressed using CTL temporal logic [4], [14], [15]. The first step
in our approach consists of translating the informal description
of the protocol into UML state machines that accurately model
abstract behaviors of the DFC components. These high-level
diagrams are then mapped into related timed automata of the
UPPAAL model-checker [3], which rigorously check the dia-
grams in relation to the safety and liveness properties we ex-
press through CTL temporal logic formulae. It is worth noting
that whenever a property is found to be unsatisfied, the tool pro-
vides us with a counterexample, i.e., a model computation path
falsifying the property. Analyzing such a counterexample helps
us understand the causes of a failure and thereby find solutions
for overcoming these causes later.

III. MODELING DISTRIBUTED COORDINATION
FUNCTION

A DCF consists of basic access mode as well as an optional
request to send/clear to send (RTS/CTS) access mode. Note
that, in this paper, we deal with the basic mode of DCF because
RTS/CTS mode can be easily seen as a particular use case of
DCF owing to the fact that stations exchange special frames us-
ing basic mode.

Recall that, before analyzing the DCF, we have to first de-
scribe the behavior of the communicating stations (implement-
ing DCF) using UML state machines [2], which are then trans-
lated into timed automata of the UPPAAL model checking tool.
Using such a gradual approach makes it possible to thoroughly
describe the behavior of DCF stations and smoothly generate
the input automata of UPPAAL. To this end, DCF basic mode
stations are formally seen as a collection of reactive objects (i.e.,
processes), each of which represents the behavior of a wireless
station implementing the DCF basic mode. These processes are
depicted using a hierarchical state machine, shown in Fig. 1,
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Get(PDU) / cwIndex := CW_MIN

When(TIME_SLOT) / senseWM()

[Free]

[Busy]

When(DIFS) / send(st, PDUReceiver, PDU)

Receive(AckSender, st, ACK)/ 

[AckSender ==PDUReceiver]

When(SIFS) / send(st, PDUSender, ACK)

Receive(PDUSender, st, PDU)

Disconnect()
Connect()

Disconnect()

Connect()

When(TimeOut)/ 

 /send(st, PDUReceiver, PDU)

Wireless station

Fig. 1. UML state machine of a wireless station.

which contains a composite state,BackingOff, whose nested
state machine, depicted in Fig. 2, describes the backoff proce-
dure that the station can invoke according to the CSMA/CA pro-
tocol if necessary.

A. A Simplified Variant of UML State Machine

As mentioned in the UML specifications [2], state machines
are object variants of Harel statecharts [16]. A state machine
shows “a behavior that specifies the sequences of states thatan
object or an interaction goes through during its life in response
to events, together with its responses and actions.” An event can
be a signal, an operation invocation, a time passage, or a condi-
tion change, whereas a state is a condition or situation during the
lifetime of an object during which it satisfies certain conditions,
performs certain activities or waits for a particular event. Here,
an event is the occurrence of a stimulus that can trigger a state
transition.

Note that a state (also called vertex) may either be simple or
composite: Any state enclosed within a composite state is called
a substate of that composite state, and when it is not contained
within any other state, is called a direct substate; otherwise, it
is called a transitively nested substate. When substates can be
executed concurrently, they are called orthogonal regions.

A transition (arc3) is a relationship between two states indi-
cating that an object in the first (source) state will performcer-
tain actions, and enter the second (target) state when a specified
event occurs and the specified conditions are satisfied.

When dealing with composite and concurrent states, the sim-
ple term, “current state,” can be quite confusing because more
than one state may be active at a particular time. If a controlis

3According to the UML terminology, an edge in a state machine is referred to
as an arc.

in a simple state, then all composite states that either directly or
transitively contain this simple state are also active. Anytransi-
tion originating from the boundary of a composite state is called
a high-level or group transition. If triggered, this results in exit-
ing all the substates of that composite state executing their exit
actions, starting with the innermost states in the active state con-
figuration.

Because we only need to use a subset of common features of
a UML state machine to describe the CSMA/CA processes, in
this paper, we chose to use a simplified and flattened version of
such a high-level language where irrelevant complex syntactical
constructs are discarded. Hence, we use hierarchical automata
such that composite states can only be sequential.

We next provide a formal definition of a state machine as a
tuple, i.e.,D = 〈S,Kind, Tag, C,Arcs, s0, E , G,Σ〉, where
the following hold:

• S is a set of states (vertices) with the topmost state,s0;
• Kind: S −→ {SimpleState, CompositeState};
• Tag: S −→ {Initial, F inal};
• C: S −→ 2S is a mapping that assigns to each states ∈ S its

direct nested states.C(s) = ∅ if Kind(s) is a simple state;
• Arcs ⊆ S × E × G × Σ × S: Is the set of transition arcs

whereE is the set of events,Σ is the set of (inter) actions,
andG is the set of guards. Note thatΣ is a set of actions,
which may be internal actions or interactions. The latter rep-
resent a cooperation between communicating state machines
over synchronization channels (i.e., an abstract point of com-
munication). For instance, the tuple(s1, e, g, a, s2) denotes a
transition arc from states1 to states2. The transition is trig-
gered by the reception of evente, but this can be taken only if
guardg is true, thereby performing actiona.
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[Busy]

BackingOff  

/{if (wcIndex<CW_MAX) wcIndex++}

When(TIME_SLOT) / senseWM!

[Busy]

[Free]

When(TIME_SLOT) / senseWM!

[Free]

[Busy]

When(DIFS) / BOCounter := BOGenerate(0, wcIndex)

When(TIME_SLOT) / senseWM!

[Busy]

When(TIME_SLOT) / senseWM!

[Free]

When(TIME_SLOT) / senseWM!

[Free]

When(DIFS)

BOCounter ==0

[Busy]

[Free] /BOCounter--

Fig. 2. UML state machine of the BackOff procedure.

B. Distributed Coordination Function of CSMA/CA Protocol

The DCF basic mode states that whenever a wireless station
obtains a packet data unit (PDU) to transmit, it has to first sense
the wireless medium (WM) to determine whether another sta-
tion is transmitting before it can initiate a transmission.This is
depicted through the state machine shown in Fig. 1, which uses a
transition arc outgoing from anidlestate to aWaitingToTransmit
state, wherein we check the availability of the wireless medium.

If the medium is sensed as free for a DCF inter-frame space
(DIFS) time interval, a transmission will occur. However, if the
medium is sensed as busy, the station postpones its transmis-
sion until the end of the current transmission, and then invokes
the backoff procedure, which lets the station postpone its PDU
transmission. As shown in Fig. 1, this part of the DCF process
is modeled using a compound transition using a dynamic choice
vertex between theWaitingToTransmitand BackingOff states.
The first segment of this transition arc is triggered by a timeout
event (i.e.,When(TIME_SLOT )), which is generated when-
ever a time slot is elapsed. The transition is thus enabled and in-
vokes the method for sensing a wireless medium. If the medium
is free, the control returns back to theWaitingToTransmitstate,
whereas if the medium is busy, then the control passes to the
compositeBackingOffstate, thereby launching its nested state
machine, illustrated in Fig. 2. TheWaitingToTransmitstate can
also be left when the medium is continually sensed as free un-
til the timeout eventWhen(DIFS)is generated, thus triggering
the transition to theWaitingForACKstate. This type of control

move causes the PDU to be sent to a receiver station using a
method call (leading to an interaction with a wireless medium)
namedsend(st, PDUreceiver, PDU), wherest represents a
sending station.

According to the DCF, a short inter-frame space (SIFS) is
used to give priority access to ACK packets. Immediately upon
receiving a packet correctly, the destination station waits for an
SIFS interval and then transmits an ACK back to the source
station confirming the correct reception. If the source station
does not receive an ACK owing to a collision or transmis-
sion error, the station reactivates the backoff algorithm af-
ter the medium remains free for an extended IFS interval
(EIFS). As shown in Fig. 1, there are two outgoing transi-
tions from aWaitingForACKstate; The transition labeled with
receive(ACKSender, st, ACK) depicts the successful termi-
nation of the PDU sending interaction once it is triggered by
the reception of an ACK from the right expected destination
(which is confirmed by the transition guard). The second tran-
sition allows the control to return back to aBackingOff state,
re-invoking the backoff procedure, which is simply triggered by
a timeout event (i.e.,When(T imeOut)), whereT imeOut is
the sum of the transmission delay and the EIFS.

Likewise, if the stationst receives a PDU from another sta-
tion during anidle state, the control moves to aWaitingUn-
tilSendACKstate, where the receiver station waits until the
When(SIFS) event is produced, thus triggering the ACK
sending transition back to anidle state. As is commonly known,
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wireless stations cannot send and receive packets simultane-
ously.

C. BackOff Procedure

Once the backoff procedure begins, the wireless station will
wait during an additional DIFS interval, and then generate a
uniformly chosen random backoff delay within the range of
[0,W −1], whereW is called the backoff window or contention
window (CW ). The backoff timer is decreased as long as the
medium is sensed as idle for aDIFS, is frozen when a trans-
mission is detected in the medium, and is resumed once the
medium is detected as free again for aDIFS interval. When
the backoff counter reaches0, the station transmits its packet.
For IEEE 802.11, the time is slotted within a basic unit of time
(i.e., the time slot), which is the time needed to detect the trans-
mission of a packet from any other station. The initialCW is
set toW = CW_MIN . If two or more stations decrease their
backoff timer to0 at the same moment, a collision occurs; under
this situation, theCW is doubled for each retransmission until it
reaches the maximum value,W = CW_MAX , and it remains
at that value until it is reset. The value ofW is reset after every
successful data packet transmission, or when the retry counter
reaches its limitCW_RETRY _MAX .

BecauseW is used to control the backoff counter, its value
will affect the performance of the DCF protocol, and improve-
ments can be accomplished by choosing better update rules than
those in the IEEE 802.11 standard. For instance, in [1], any
station may be disconnected whenever its SNR is lower than
a certain threshold. We represent this improvement in the state
machine (Fig. 1) using a new state,Disconnected, linked to an
idle state by means of incoming and outgoing arcs labeled with
connect() anddisconnect() actions, respectively.

Fig. 2 shows how the backoff procedure is performed. The
variablewcIndex is used to compute the upper bound of the
contention window,CW = [0, 2wcIndex−1]. When entering the
initial stateWaitUntilCurrentTransmissionIsOver, thewcIndex
variable is incremented (up to the thresholdCW_MAX).
From this start point, the medium is sensed every time a
When(TIME_SLOT ) event is generated. If the medium is
sensed as busy (i.e., the current transmission is not yet com-
pleted), the control returns back to the initial state; otherwise,
it moves into the next state,WaitingDIFS. At this point, the
state machine tests whether the medium is still free each time
aWhen(TIME_SLOT ) event is dispatched. Thus, either this
recursive process continues until the timeoutWhen(DIFS)
occurs, causing the control to move into aBackOffDelayWaiting
state, or the backoff process breaks off when it finds the medium
busy. In this case, a high-level outgoing arc to the outer bound-
ary of theBackingOffstate machine is taken, and thus the back-
off procedure is resumed from the beginning and thewcIndex

is incremented. At aBackOffDelayWaitingstate, we measure
the time progress using a backoff counter,BOCounter, initial-
ized using a random value sampled from the contention window,
[0, 2wcIndex − 1]. BOCounter is decremented for each time
slot if the medium is sensed as free; otherwise, the control en-
ters into aBackOffFrozenstate, where it stays until the medium
becomes free again, thereby passing control to theWaitAgain-
DIFS state. Thereafter, the state machine senses the medium as

free again for DIFS, and thus it can return back into aBack-
OffDelayWaitingstate and resume decrementingBOCounter
counter. In the meantime, if the medium is sensed as busy, the
control is passed to the initial state,WaitUntilCurrentTransmis-
sionIsOverthanks to the high-level outgoing arc to the boundary
of the state machine.

IV. UPPAAL AUTOMATA OF THE PROTOCOL

The UPPAAL model checker [3] is based on the theory of
timed automata [17], which are flattened automata augmented
with time constraints over logical clocks. However, UPPAAL
modeling language offers additional features such as bounded
integer variables and urgency. The query language of UPPAAL
used to specify the properties to be checked is a subset of CTL.
[15], [18].

Accordingly, before a state diagram can be model-checked
using UPPAAL, it first has to be translated into its timed au-
tomata [3]. We first provide the definition of standard automata,
and show how they are augmented using time annotations and
a timed semantics to give rise to the modeling language of UP-
PAAL. Next, through a case study, we describe the method of
translating our hierarchical state machines into these timed au-
tomata.

A. Timed Automata

Below, we present the definition of a classical finite state au-
tomaton, which we use to specify the intended behavior of a pro-
cess, or an active component (such as a wireless station) without
taking time constraints into account:

Definition 1: An untimed automaton is a tuple,A =
〈Q,Σ, →֒, q0〉, where the following hold:
• Q is the set of locations (untimed states) of this automaton

(depicted as graph nodes in Fig. 3);
• Σ is the set of actions and interactions that this process can

perform;
• →֒∈ Q × Σ × Q is the set of edges (automaton transitions)

between locations (untimed states);
• q0 is the initial location.
Designers of a reactive component may add any timing con-
straints to its automaton for interactions that may occur between
the component and its environment. Hence, to correctly provide
component services to its environment, a sending or reception
has to occur in accordance with the timing restrictions. This ap-
proach consists formally of the expression of time constraints
by means of Boolean formulas over logical clocks. Although
such variables express the progression of time, their values can
be initialized and tested.

Definition 2: (Timing constraint) Letχ be a finite set of
clocks ranging overR≥0 (set of non negative real numbers).
The setΨ(χ) of the timing constraints onχ is defined through
the following syntax:

ψ ::= true | x≪ c | x− y ≪ c | not(ψ) | ψ ∧ ψ
wherex, y ∈ χ, c ∈ R≥0, and≪∈ {<,≤}. Other assertions
such as,x > 3, 2 ≤ x < y + 5, andψ ∨ ψ can be defined as
abbreviations.

The valuationv ∈ V of the clocks is a function used for as-
signing a non-negative real valuev(x) ∈ R≥0 to each clock,



390 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGUST 2014

x ∈ χ. We can state thatv satisfiesψ ∈ Ψ if ψ(v) is evalu-
ated astrue. For v ∈ V andX ⊆ χ, we definev[X := 0]
to be the valuationv′ ∈ V such thatv′(x) = 0 if x ∈ X , and
v′(x) = v(x) otherwise. Forδ ∈ R≥0, we definev + δ to be
the valuationv′ ∈ V such thatv′(x) = v(x) + δ for all x ∈ χ.

A timed automaton is a finite directed graph annotated using
conditions and resets over non-negative real valued clocks. We
therefore enhance previous untimed graphs using timing con-
strains by adding three mappingsI,G, andZ as follows.

Definition 3: The timed version of automatonA = 〈Q, →֒
,Σ, q0〉 is an extended graph,AT = 〈A, χ, I,G, Z〉, where the
following hold:
• χ is a finite set of clocks;
• I : Q −→ Ψ(χ);
• G :→֒−→ Ψ(χ);
• andZ :→֒−→ 2χ.
The first mapping,I, assigns a sojourn or activity condition
called aninvariant, which may be true, to each location of the
untimed automaton. The second mapping,G, assigns a timing
guard to each edge(e ∈→֒), which should be true to allow the
edge to be taken (i.e., to let the transition fire). The mapping,
Z, associates a set of clock initializations, which may be empty
(Fig. 3), with each edge.

The state of timed automatonAT shows the configuration of
the automaton at a particular instant. Formally, this is thepair
(q, v) defined based on locationq and clock valuationv. In any
state,AT can evolve either through a change in the discrete state
corresponding to movement through an edge, which may change
the location and reset some of the clocks, or through a contin-
uous state change owing to the progression of time at the cur-
rent location. Fora ∈ Σ andδ ∈ R≥0, we define the relations
a

−→⊆ (Q×V )2 and
δ

−→⊆ (Q×V )2 characterizing the discrete
and continuous state changes, respectively, as follows:

e = (q, a, q′) ∈→֒, G(e)(v)

(q, v)
a

−→ (q′, v[Z(e) := 0])
,
∀δ′ ∈ R≥0, δ′ ≤ δ.I(q)(v + δ′)

(q, v)
δ

−→ (q′, v + δ)
.

The role of the invariants is important. Indeed, as the time pro-
gresses, the values of the clocks increase providing that the state
satisfies the invariant. For states that do not satisfy the invariant,
the time progression is "stopped." This mechanism allows the
specification of hard deadlines, i.e., when the deadline specified
by the invariant is reached for a certain action, the continuous
flow of time is interrupted. Therefore, the action becomes ur-
gent and is "forced" to occur if enabled.

A deadlock status will therefore be given to any timed config-
uration of an automaton whose related active location has a false
activity condition, and whose its outgoing transitions allhave
false timing guards. In other words, the time cannot progress
under such a state in which no actions are enabled in respect
to the timing guard. Therefore, there is no method availablefor
leaving this state and enabling the time to progress again.

B. Modeling Language of UPPAAL

The modeling language of UPPAAL consists of networks of
timed automata. In fact, a system is modeled as a network of
timed automata in parallel, each of which is related to at least

one of the system components. As aforementioned, a timed au-
tomaton is a flattened finite-state machine extended using clock
variables. It uses a dense-time model where a clock variable
evaluates to a real number. All clocks progress synchronously,
and the model is further extended using bounded discrete vari-
ables that are a part of the state. As used in programming lan-
guages, these variables are read, written, and subject to common
arithmetic operations. A state of the system is defined basedon
the locations of all automata, the clock constraints, and the val-
ues of the discrete variables. Each automaton may fire an edge
separately or synchronize with another automaton, leadingto a
new state.

The UPPAAL modeling language extends the timed automata
using the following additional features:
• Constantsare declared asconst name=value. By definition,

constants cannot be modified and must have an integer value.
Bounded integervariables are declared asint[min,max]
name, wheremin andmax are the lower and upper bounds,
respectively. Guards, invariants, and assignments may con-
tain expressions ranging over bounded integer variables. The
bounds are checked upon verification, and violating a bound
leads to an invalid state that is discarded (at run-time). Ifthe
bounds are omitted, the default range of−32, 768 to 32, 768
is used.
A declaration of certain constants denoting the minimum and
maximum indices of the contention window, as well as the
number of times we can recall a backoff procedure during the
transmission of the same packet after the variablecwIndex

has reached its maximum value, is as follows:
const int CW_MIN = 3, CW_MAX = 10;

const int CW_RETRY _MAX = 5;

• Templates automataare defined using a set of parameters of
any type (e.g., int or chan). These parameters are substituted
for a given argument in the process declaration. Herein, we
identify stations using the parameter of a new declared type,
idSt, as follows :
typedef int[0, NBR_STATIONS − 1] idSt;

whereNBR_STATIONS is an integer constant denoting
the number of stations.

• Binary synchronization channels(abstract gates) are declared
as chan c. An edge labeled withc! synchronizes with an-
other labeled asc?. A synchronization pair is chosen non-
deterministically if several combinations are enabled.

• Broadcast channelsare declared asbroadcast chan c.
For a broadcast synchronization, one sendercollision!
can synchronize with an arbitrary number of receivers
collision?. Any receiver that can synchronize during its cur-
rent state must do so. If there are no receivers, then the sender
can still execute acollision! action, i.e., broadcast sending is
never blocking.

• Urgent synchronization channelsare declared by prefixing the
channel declaration using the keywordurgent. Delays must
not occur if a synchronization transition is enabled in an ur-
gent channel. Edges using urgent channels for synchroniza-
tion cannot have time constraints, i.e., no clock guards. Ur-
gent locations are semantically equivalent to adding an extra
clockx, that is reset on all incoming edges, and having an in-
variantx ≤ 0 on the location. Hence, time is not allowed to



HAMMAL et al.: FORMAL MODELING AND VERIFICATION OF AN ENHANCED... 391

progress when the system is at an urgent location.
• Committed locationsare even more restrictive in their execu-

tion than urgent locations. A state is committed if any of the
locations in the state is committed. A committed state cannot
delay and the next transition has to involve an outgoing edge
of at least one of the committed locations.

• Arraysare allowed for clocks, channels, constants, and integer
variables, and are defined by appending the size to the variable
name, e.g.,
chan beginSendPDU [NBR_STATIONS];

chan endSendPDU [NBR_STATIONS];

chan beginReceivePDU [NBR_STATIONS];

chan endReceivePDU [NBR_STATIONS];

• Expressions in UPPAALrange over clocks and integer vari-
ables. Expressions are used with the following labels:
– A guard: A guard is a particular expression satisfying

the following conditions: it is free of side-effects, and it
evaluates to a Boolean; in addition, only clocks, integer
variables, and constants are referenced (or arrays of these
types); clocks and clock differences are only compared
to integer expressions; guards over clocks are essentially
conjunctions (disjunctions are allowed over integer condi-
tions).

– A synchronization: A synchronization label is on either the
Expression! or Expression? form or is an empty label.
The expression must be free of side-effects, evaluate to a
channel, and only refer to integers, constants, and channels.

– An assignment: An assignment label is a comma-separated
list of expressions with a side-effect, where expressions
must only refer to clocks, integer variables, and constants,
and can only assign integer values to clocks.

– An invariant: An invariant is an expression that satisfies the
following conditions: it is free of side-effects, with onlya
clock, integer variables, and constants referenced, and isa
conjunction of conditions of the formx < e or x <= e,
wherex is a clock reference ande evaluates to an integer.

C. Translation of UML State Machines into Timed Automata

The method of translating UML state diagrams into UPPAAL
timed automata consists of mapping each state machine into an
UPPAAL timed automaton. We also have to formally model the
behavior of the wireless medium, be it an access point (in in-
frastructure mode) or a transmission channel (in ad hoc mode).
For both of these situations, any instantaneous synchronized
action a between a station and a medium, is represented as
two abstract interactions (a! on the sender side, anda? on the
receiver side). Moreover, if actiona is non-atomic, it needs
to be split into two instantaneous sub-actionsbegin − a and
end− a, which will be handled as previously described. There-
fore, every method call in the state machine of station,st, is
translated into a pair of interactions over related synchroniza-
tion channels. For instance, the sending of a PDU is mapped
into the pair (beginSendPDU [st]!, endSendPDU [st]!), and
the message destination is stored in thestth position of the
array To[NBR_STATIONS]. Similarly, the reception of
the PDU is mapped into the pair (beginReceivePDU [st]?,
endReceivePDU [st]?), and the message source is stored in the
stth position of the array,From[NBR_STATIONS].

We also add a new broadcast channelcollision to con-
vey an event broadcasted by the medium to all stations when-
ever two or more of them try to simultaneously communi-
cate with the medium. We also use an array of channels
fail[NBR_STATIONS], each of which (i.e.,fail[st]) is re-
lated to the signals exchanged between the medium and station
st, to depict possible transmission failures.

Before proceeding with the description of the translation
method, we provide below the global declarations of the con-
stants and variables used to define our system processes and al-
lowing them to be simulated and verified:
const int DATA_RATE = 1375000; //1.375 MBytes/s.

const int PREAMBLE = 192; //length of PDU preamble in

bytes.

const int ACK_DURATION = PREAMBLE

+ ((14 ∗ 1000000)/DATA_RATE);

const int TIME_SLOT = 20, SIFS = 10, DIFS = SIFS + 2 ∗

TIME_SLOT, TIMEOUT = SIFS + ACK_DURATION,EIFS =

TIMEOUT + DIFS;

bool wmStatus = true; //a variable that denotes whether the

medium is free or not.

int To[NBR_STATIONS]; //To[st] denotes the receiver

station to which st is sending a PDU.

int From[NBR_STATIONS];//From[st] denotes the sender station

from which st is receiving a PDU.

int Duration[NBR_STATIONS];//Duration[st] contains the

transmission duration of the PDU sent by station st.

Such a value will be computed by a function getDuration()

depending on the PDU length.

The following arrays of synchronization channels of-
fer the means to mallow theStation, BackingOff , and
WirelessMedium processes to cooperate through interac-
tions:
chan fail[NBR_STATIONS];

broadcast chan collision;
chan beginSendPDU [NBR_STATIONS],

endSendPDU [NBR_STATIONS],
beginReceivePDU [NBR_STATIONS],
endReceivePDU [NBR_STATIONS];

chan beginSendACK[NBR_STATIONS],
endSendACK[NBR_STATIONS],
beginReceiveACK[NBR_STATIONS],
endReceiveACK[NBR_STATIONS];

chan beginBackOff [NBR_STATIONS],
endBackOff [NBR_STATIONS];

C.1 Station Template

Each state in the UML diagram whown in Fig. 1 is translated
into a location using the same label in the target timed automa-
ton (Fig. 3). A transition arc of UML state machine is split into
two edges along with an intermediate location if the arc is a
compound transition (including a dynamic choice vertex) oris
labeled with an action whose performance has a non-zero du-
ration; otherwise, the arc is translated into only a single edge.
Moreover, if the compound arc is labeled with an instantaneous
action, the in-between location should be a committed location.

The first edge will be labeled with the triggering event of the
arc, the second edge with its action, and the intermediate lo-
cation with its guard. If a trigger event is a timed event ( e.g.,
When(TIME_SLOT ) in Fig. 1), we use clockx to add the
invariantx ≤ TIME_SLOT to the source location of the first
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Disconnected

z<=TIMEOUT

WaitingUntilSendAck

x<=SIFS

ACKSender==PDUReceiver

WaitingForACK

z<=TIMEOUT

WirelessMediumSensing

BackingOff

WaitingUntilTransmit

y<=DIFS && x<=TIME_SLOT

Idle_Connected

beginSendPDU[st]!
To[st]:=PDUReceiver,
Duration[st]:=getDuration()

beginBackOff[st]!

collision?

fail[st]?

x:=0,y:=0

z==TIMEOUTcollision?

z:=0

collision?

collision?

endSendACK[st]!

x:=0

x==SIFS
beginSendACK[st]!
To[st]:=PDUSender

endReceivePDU[st]?

x:=0

beginReceivePDU[st]?
PDUSender := From[st]

endReceiveACK[st]?

x:=0

beginReceiveACK[st]?

ACKSender:=From[st]

z==TIMEOUT

endSendPDU[st]!

z:=0

endBackOff[st]?
y==DIFS

beginSendPDU[st]!

To[st]:=PDUReceiver,
Duration[st]:=getDuration()

wmStatus
x:=0

!wmStatus
beginBackOff[st]!

x==TIME_SLOT
e:idSt

e != st
PDUReceiver:=e, x:=0, y:=0

Fig. 3. UPPAAL automaton of a wireless station.

WaitAgainDIFS

x<=TIME_SLOT && y<=DIFS

BackOffFrozen

x<=TIME_SLOT

BackOffDelayWaiting

BOCounter>=0 && x<=TIME_SLOT

WaitingDIFS

x<=TIME_SLOT && y<=DIFS

WaitingUntillCurrentTransmissionIsOver

x<=TIME_SLOT

!wmStatus
x:=0,incCWIndex()

y==DIFS
x:=0

wmStatus

x:=0

x==TIME_SLOT
wmStatus

x:=0,y:=0

!wmStatus
x:=0

x==TIME_SLOT

!wmStatus

x:=0

wmStatus
x:=0,BOCounter--

BOCounter==0
endBackOff[st]!

x==TIME_SLOT && BOCounter>0

rKey:RandomKeys
y==DIFS

BOCounter:=generateBOC(rKey), x:=0

!wmStatus

x:=0,incCWIndex()

wmStatus
x:=0

x==TIME_SLOT

wmStatus
x:=0,y:=0

!wmStatus
x:=0

x==TIME_SLOT
beginBackOff[st]?

x:=0,incCWIndex()

Fig. 4. UPPAAL automaton of the BackOffprocedure.

edge. We also need to add the initialization ofx to all incoming
edges for this location (Fig. 3). For instance, the arc between the
idle andWaitingUntilTransmitstates in Fig. 1 is translated into a
single edge between the corresponding locations in the automa-
ton shown in Fig. 3. The edge is labeled with the assignment
PDUReceiver := e, wheree is the station receiving the PDU.
The commande: idSt leads to a non-deterministic choice of the
value ofe within the intervalidSt, but thanks to the edge guard
it will differ from the sender station,st. The edge also has as
its assignments the initialization of clocksx andy used in the

invarianty ≤ DIFS && x ≤ TIME_SLOT of the target
locationWaitingUntilTransmit.

On the other hand, each of the two outgoing arcs from the
latter state (Fig. 1) splits into two edges (Fig. 3) because one of
them is a compound transition and the other requires a non-zero
duration. Indeed, the control can remain at locationWaitingUn-
tilTransmit (Fig. 3) as long as its invariant remains true; how-
ever, whenever the guardx == TIME_SLOT becomes true
the Boolean variablewmStatus is tested at the committed in-
termediate location. If the invariant is found to be false (i.e., the
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wireless medium is found to be busy), an initiating signal,begin-
BackOff[st], is then sent to the corresponding backoff process,
and the control passes to theBackingOfflocation where it awaits
the reception of the termination signal,endBackOff[st]. If the
Boolean variablewmStatusis true (which means the medium
is continuously free), the control returns back toWaitingUntil-
Transmit.

Note that this sensing procedure continues until the guard
(y == DIFS) becomes true, thereby causing a control transfer
and the sending of the PDU. Because this latter action is not in-
stantaneous, we need to split it into more than one edge (Fig.3)
along with the intermediate (but not urgent) location whereei-
ther the send action successfully ends, leading the transfer of
control to the locationWaitingForAck, or acollision? event oc-
curs, allowing the control to pass to another intermediate loca-
tion. In either case, a new clockz is initialized and the control
waits for as long as the invariantz ≤ TIMEOUT remains
true. However, in the latter case, the control will be forcibly
transferred to theBackingOff location, whereas in the former
case, theWaitingUntilTransmitlocation can be left to the ini-
tial idle location if an acknowledgment is correctly received be-
fore the timeout event occurs; otherwise, it will be exited to the
BackingOfflocation. Recall that this location is entered by send-
ing abeginBackOff[st] signal to launch the backoff process, and
can only be left by receiving anendBackOff[st] signal.

C.2 BackingOff Template

When abeginBackOffsignal is received at the initial location,
a backoff procedure is launched and the control is moved to
the WaitingUntilCurrentTransmissionIsOverlocation (Fig. 4),
where it remains as long as the wireless medium is sensed as
busy. Once the medium becomes free, it should remain so for
DIFS units of time so that the control can move forward to the
BackOffDelayWaitinglocation; otherwise, the control returns
back to the source location, thereby leading to a re-launching
of the backoff procedure with a widened contention window.

During the transition to theBackOffDelayWaitinglocation, a
backoff counter is randomly sampled from the contention win-
dow. The control will stay at that location, and the backoff
counter is then decremented for each time slot as long as the
medium is sensed as free. Once this counter reaches zero, an
endBackOffsignal is triggered, and the control returns to the
initial state. However, if the medium is sensed as busy in the
meantime, the backoff counter decrement is frozen until thein-
tervening communication is completed. Thereafter, the medium
has to be sensed as free at theWaitAgainDIFSlocation for DIFS
units of time to allow the control to return to theBackOffDelay-
Waiting location; otherwise, the backoff is re-launched and the
contention window is widened.

C.3 Wireless Medium Template

The role of the medium is to forward messages (PDU) from
the senders to the receivers, and vice versa, forward acknowl-
edgment packets from the receivers to the senders. Transmis-
sions may fail or interfere with other transmission leadingto
collisions (Fig. 5). The process of sending a PDU is mod-
eled through two pairs of successive interactions between a
medium with a sender and a receiver. The first pair is (begin-

SendPDU[e]?, beginReceivePDU[e]!) and consists of model-
ing the beginning of a transmission, whereas the second pairis
(endSendPDU[e]?,sendReceivePDU[e]!), and models its termi-
nation. The delay between these two pairs depends on the dura-
tion of the PDU transmission. Such a time constraint is depicted
by the invariantz ≤ Duration[from] on the node between the
two pairs, and the guardz == Duration[from] on the outgo-
ing arc from this node. Any intervening transmission (of a PDU
or ACK) during the control remaining in the intermediate nodes
will create a collision.

On the other hand, the process of sending acknowledgments is
modeled exactly in the same way with onlyPDU suffixes related
to interactions’ names being substituted withACK suffix.

C.4 System

Once the templates have been defined, we build the entire
system by instantiating theStation andBackingOff templates
as many times as necessary, and then combine, in parallel, the
produced processes with the singleWirelessMedium process
(see the following example).

Station0 = Station(0);
BackingOff0=BackingOff(0);
Station1 = Station(1);
BackingOff1=BackingOff(1);
...
// List one or more processes to be composed into a system.
system Station0,BackingOff0,Station1,BackingOff1,WirelessMedium;

V. MODEL CHECKING PROPERTIES

Model checking is an automatic verification technique for
hardware and software systems [4]. Given the model of a sys-
tem, a model checker automatically tests whether the model
meets the given specifications. The specifications are usually
written in propositional temporal logic, i.e., linear temporal
logic (LTL) or CTL. The verification procedure is an exhaustive
search of the state space of the system under design. UPPAAL
is one of the many model-checking tools that can be utilized.

Similarly to the modeling process, the requirement specifica-
tions must be expressed in a formally well-defined and machine-
readable language. Several types of logics exist in the scien-
tific literature, and UPPAAL uses a simplified version of CTL,
where the nesting of the path formulae is discarded. As with
CTL, the query language consists of both path and state for-
mulae; state formulae describe individual states, whereaspath
formulae quantify over the paths or traces of the model. Path
formulae can be classified into reachability, safety, and liveness
types.
• State Formulae: A state formula is an expression that can

be evaluated for a state without looking at the behavior of the
model. For instance, this may be a simple expression, such as
y >= DIFS, which is a true expression for a state whenever
y is greater than or equal toDIFS. The syntax of state for-
mula is a superset of a guard formula, i.e., a state formula isan
expression free of side-effects; however, in contrast to a guard,
the use of disjunctions is not restricted. It is also possible to
test whether a particular process is at a given location using an
expression in the form ofStation0.Idle_Connected, where
Station0 is the process andIdle_Connected is the location.
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z<=ACK_DURATION z<=Duration[from]

fail[from]!
wmStatus:=true

fail[from]!
wmStatus:=true

collision!
wmStatus:=true

a:idSt
beginSendPDU[a]?

a:idSt
beginSendACK[a]?

a:idSt
beginSendPDU[a]?

a:idSt
beginSendACK[a]?

a:idSt
beginSendACK[a]?

a:idSt
beginSendPDU[a]?

a:idSt

beginSendACK[a]?

a:idSt
beginSendPDU[a]?

collision!
wmStatus:=true

a:idSt
beginSendACK[a]?

a:idSt
beginSendPDU[a]?

a:idSt

beginSendACK[a]?

collision!
wmStatus:=true

a:idSt
beginSendPDU[a]?

endReceiveACK[to]!
wmStatus:=true, z:=0

beginReceiveACK[to]!
From[to]:=from

z==ACK_DURATION

endSendACK[from]?

e:idSt
beginSendACK[e]?

wmStatus:=false, from:=e, to=To[e], z:=0

From[to]:=from
endReceivePDU[to]!

wmStatus:=true, z:=0

z==Duration[from]

endSendPDU[from]?

e:idSt
beginSendPDU[e]?

wmStatus:=false, from:=e, to:=To[e], z:=0

beginReceivePDU[to]!

Fig. 5. UPPAAL automaton modeling a wireless medium (ad hoc mode) or access point (Infrastructure mode)

In UPPAAL, a deadlock is expressed using a special state for-
mula (although this cannot be used alone as state formula).
Such a formula simply consists of a keyworddeadlock and is
satisfied for all deadlock states. A state is considered a dead-
lock state if no outgoing action transitions exist from neither
the state itself or any of its delay successors. Owing to the cur-
rent limitations in UPPAAL, the deadlock state formula can
only be used with reachability path formulae, as shown later.

• Reachability Properties: Reachability properties are the
simplest form of properties. They ask whether a given state
formula,φ, possibly can be satisfied by any reachable state.
Another way of stating this is, does a path starting at the initial
state exist such thatφ is eventually satisfied along that path?
We express that some state satisfyingφ should be reachable
using the path formula,E <> φ. Reachability properties are
often used to perform sanity checks when designing a model .
For instance, for the model described in [1], we checked such
properties using formula, e.g., (1),

E <> Station0.WaitingForAck (1)

to determine whether the enhanced CSMA/CA protocol
makes it possible for the sender to send a message at all,
and whether it allows a message to be received. Although
these properties do not guarantee the accuracy of the protocol
by themselves (i.e., whether any message is eventually deliv-
ered), they do validate the basic behavior of the model.

• Safety Properties:Safety properties are of the form: "some-
thing bad will never happen". For instance, a deadlock should
never occur in the model of the modified or the original ver-
sion [1] of the CSMA/CA protocol. A variation of this prop-
erty is that "something will possibly never happen". For in-
stance when playing a game, a safe state is one in which the
game can still be won, and hence will possibly not be lost.

For UPPAAL, these properties are formulated positively, e.g.,
something good is invariantly true. Letφ be a state formula.
We considerφ to be true for all reachable states using the path
formulaA[]φ, whereasE[]φ indicates that there a maximal
path should exist such thatφ is always true. For instance, we
proved using UPPAAL that the following two properties are
satisfied:

A[] not deadlock, (2)

A[](Station1.WaitingForACK imply

Station1.y >= DIFS)
(3)

which state respectively that the model is deadlock-free and
behaves in accordance with theDIFS constraint.

• Liveness Properties: Liveness properties are of the form:
"Something will eventually happen", e.g., when pressing the
on−button of a TV remote control, the television should even-
tually turn on; or in a communication protocol model, any
message that has been sent should eventually be received. In
its simple form, the liveness is expressed using the path for-
mulaA <> φ, meaning thatφ is eventually satisfied. A
more useful form is aleads_to or response property, writ-
ten asφ 99K ψ, which is read as, wheneverφ is satisfied, then
eventuallyψ will also also eventually be satisfied, e.g., when-
ever a message is sent, it will eventually be received4. For
instance, we proved using UPPAAL that the two following
liveness properties are not satisfied:

Station0.WaitingUntilT ransmit

99K Station0.Idle_Connected,
(4)

4φ 99K ψ is equivalent toA[](φ⇒ A <> ψ).



HAMMAL et al.: FORMAL MODELING AND VERIFICATION OF AN ENHANCED... 395

Station0.WaitingForACK

99K Station0.Idle_Connected.
(5)

The counterexamples include a peculiar case in which two
stations repeatedly try to transmit at the same time and then
chose the same backoff delays, thereby leading always to in-
evitable collisions.

VI. CONCLUSION

In this paper, we presented a formal approach for modeling
and checking a new variant [1] of the IEEE 802.11 CSMA/CA
protocol. We formally proved that the safety properties aresatis-
fied (e.g., absence of a deadlock) by this new version. However,
the model checking shows a peculiar case leading the protocol to
not consistently guaranteeing a successful transmission of pack-
ets. Furthermore, no upper bound exists for the required delay
to successfully transmit a packet.

Probabilistic model checking can therefore be applied to our
model to evaluate the timing limits. To enable such an approach,
we have to label transitions of our automata with quantitative an-
notations regarding transmission success, failure, and collision
probabilities. Thereafter, more suitable tools must to be used to
make use of this information to deal quantitatively with thelive-
ness properties. On the other hand, we believe that our models
can also be used for a security analysis, such as attack detection.
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