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An Energy Efficient Localized Topology Control
Algorithm for Wireless Multihop Networks

Dezhong Shang, Baoxian Zhang, Zheng Yao, and Cheng Li

Abstract: Localized topology control is attractive for obtaining re-
duced network graphs with desirable features such as sparser con-
nectivity and reduced transmit powers. In this paper, we focus on
studying how to prolong network lifetime in the context of localized
topology control for wireless multi-hop networks. For thispurpose,
we propose an energy efficient localized topology control algorithm.
In our algorithm, each node is required to maintain its one-hop
neighborhood topology. In order to achieve long network lifetime,
we introduce a new metric for characterizing the energy critical-
ity status of each link in the network. Each node independently
builds a local energy-efficient spanning tree for finding a reduced
neighbor set while maximally avoiding using energy-critical links
in its neighborhood for the local spanning tree construction. We
present the detailed design description of our algorithm. The com-
putational complexity of the proposed algorithm is deducedto be
O(m log n), where m and n represent the number of links and
nodes in a node’s one-hop neighborhood, respectively. Simulation
results show that our algorithm significantly outperforms existing
work in terms of network lifetime.

Index Terms: Energy criticality, energy efficient routing, localized
topology control, wireless multi-hop networks.

I. INTRODUCTION

The topology of a multihop wireless network (e.g., wireless
ad hoc network, wireless sensor network, etc.) has great impact
on the network performance [1]–[5]. In many cases, nodes in
a wireless multihop network are often battery operated. When
the battery of a node runs out of energy, a node cannot work any
longer. The goal of topology control is to achieve sparse connec-
tivity, decreased energy consumption and radio interface,con-
trolled transmission power, and prolonged network lifetime. Re-
cently, design of efficient topology control algorithms hasat-
tracted a lot of attention and much work has been carried out.

Existing topology control algorithms focus mainly on the al-
location of low transmit powers at network nodes while preserv-
ing global connectivity. Based on the required network state in-
formation to be kept at nodes, existing algorithms can work with
either global network state information (e.g., [5], [6]) orlocal
network state information (e.g., [7]–[9]). The former can usually
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assign very low transmit powers at node while the latter has high
scalability with certain sacrifice (i.e., increase) in nodetrans-
mit powers. However, all the above algorithms overemphasize
too much on the sparseness of created networks after topology
control and lack of consideration of the energy criticalitystatus
of nodes and links in the network. Their generated topologies
may keep using the links between energy critical nodes contin-
uously for packet relaying while removing those links between
energy abundant nodes or links under the name of generating
sparser topologies, which can in return hurt the network life-
time performance. Considering the energy-criticality of nodes /
links into topology control is important for achieving prolonged
network lifetime. In [10], Liuet al. designed an enhanced al-
gorithm to the local minimum spanning tree (LMST) algorithm
(E-LMST) by considering the energy-criticality of nodes when
building local minimal spanning tree by forcing those energy-
critical nodes (if any) to be leaf nodes on the tree. Simulation
results show that E-LMST outperforms LMST in terms of net-
work lifetime. However, the ability of E-LMST for prolonging
network lifetime is still considered to be limited. How to de-
sign energy-efficient localized topology control algorithms for
prolonged network lifetime by fully utilizing the limited routing
information at network node is still an interesting topic toex-
plore.

In this paper, a localized energy-efficient topology control al-
gorithm is proposed to achieve prolonged network lifetime via
energy-draining balancing among nodes. To characterize the en-
ergy status of each link in the network, a new metric is intro-
duced for localized topology control. In our proposed algorithm,
those links between energy abundant nodes are more likely tobe
used when generating each node’s neighbor set in order to build
a sparser network with long lifetime. It requires each node to
keep its one-hop neighborhood knowledge including the topol-
ogy as well as the energy status (after granulation) of each link
in the one-hop neighborhood. The computational complexityof
our proposed algorithm is derived to beO(m logn), wherem
andn represent the number of links and nodes in a node’s one-
hop neighborhood. Simulation results show that the proposed
algorithm can achieve significantly prolonged network lifetime
as compared with existing algorithms.

The rest of this paper is organized as follows. In Section II,
we briefly review related work. In Section III, we model the
network under study. In Section IV, we propose the localized
topology control algorithm and derive its computational com-
plexity. In Section V, we conduct extensive simulations to eval-
uate the performance of the proposed algorithm by comparingit
with existing work. In Section VI, we conclude this paper.
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II. RELATED WORK

Topology control has great impact on the performance of
wireless networks. In the literature, a lot of topology control al-
gorithms have been proposed. Based on the network state infor-
mation to be kept, existing topology control algorithms canbe
classified into two categories: Algorithms using global network
state information and algorithms requiring local network state
information to be kept at each node (e.g., one-hop or two-hop
neighborhood knowledge). The latter type of algorithms is often
referred to as localized algorithms. In a topology control algo-
rithm belonging to the former type, global network state infor-
mation is needed for generating reduced graphs. Therefore,their
implementations are expensive in practice due to the high over-
head for collecting and storing such information. In contrast,
localized algorithms can enable each network node to indepen-
dently control its local topology by using its local neighbor-
hood information while keeping the connectivity of the network
(e.g., LMST [7], LSPT [8]) or connected with high probability
(e.g.,k-NEIGH protocol [11]). In general, localized algorithms
have higher scalability than that using global information. On
the other hand, algorithms using global network state informa-
tion can provide better topology control performance (e.g., in
terms of reducing nodal transmit powers) and exhibit betterper-
formance in small-scale networks. Next, we shall respectively
introduce typical algorithms belonging to either type.

Some typical topology control algorithms using global net-
work state information are introduced as follows. In [5], Ra-
manathanet al. presented two algorithms respectively called
CONNECT and BICONNAUGMENT, which are greedy algo-
rithms minimizing the maximal power used per node. These
two algorithms work to merge different network components
iteratively until only one remains (provided that the original
graph is connected). The COMPOW protocol, proposed by
Narayanaswamyet al. in [6], tries to maintain the global con-
nectivity of the entire network with the minimal but sufficiently
high common transmission power. In COMPOW, each node
is assumed to be able to work at multiple discrete power lev-
els. COMPOW requires each node to run several distance vector
routing daemons in parallel, one for each power level. Each rout-
ing daemon converges independently in the network. However,
its high communication overhead is a drawback in large-scale
networks. In [12], Kawadiaet al. extended the COMPOW pro-
tocol to work in networks with non-uniform node distribution
in order to achieve reduced power consumption for end-to-end
packet delivery.

Many localized topology control algorithms have been pro-
posed in recent years. Relative neighborhood graphs (RNG) and
Gabriel graphs (GG) are well known localized topology control
algorithms [13]. The RNG has an edge between two nodesu and
v, if there is no nodew such thatmax {d (u,w) , d (v, w)} <
d (u, v), whered (x, y) represents the Euclidean distance be-
tweenx andy. The GG has an edge between two nodesu andv if
and only if there is no nodew such thatd2 (u,w) + d2 (v, w) ≤
d2 (u, v). Both RNG and GG are easy to compute using a lo-
cal algorithm. The directed RNG (DRNG) [14] is aimed to en-
hancing RNG to work with heterogeneous nodes and in irreg-
ular radio environment and it removes those long links which
can be replaced by other shorter bypassing links. DRNG re-

quires two-hop topology information to be kept at nodes. In [9],
Rodoplu and Meng proposed the concept of relay region and
enclosure graph, with which each node builds a local closure
graph and maintains only a set of neighbors with which direct
communication is power-efficient than the case that an interme-
diate node is introduced. In [8], Dijkstra’s algorithm is applied to
the one-hop local topology at each node to build sparse connec-
tivity such that each node independently builds a local shortest
path spanning tree (LSPT) on top of its one-hop neighborhood
and then maintains only those one-hop on-tree neighbors as its
new neighbors. In [7], a localized topology control algorithm
based on the LMST is proposed. In this algorithm, each node
builds its own minimum spanning tree independently according
to the information on its one-hop neighborhood, and only keeps
one-hop nodes on the tree as its neighbors in the final topology
graph. The simulation results in [7] show that LMST is able to
reduce transmission power of nodes and is proved in the litera-
ture that the degree of any node in the topology-control graph
is bounded by 6. However, all the above localized topology al-
gorithms fail to consider the energy criticality of nodes. In this
case, some energy-critical nodes may be overused until these
nodes run out of power. In particular, for static networks, their
generated topologies are invariable during the network lifetime
if link powers do not change with time.

Recently, some lifetime-prolonging localized topology con-
trol algorithms have been proposed. In [10], E-LMST enhances
LMST for prolonged network lifetime. For this purpose, E-
LMST introduces an energy-draining balancing strategy and
tries to avoid using those energy-critical nodes to forwardpack-
ets, if possible. E-LMST requires each node to know whether
it belongs to energy-critical nodes among all nodes in the entire
network. With that knowledge, each node builds a local mini-
mum spanning tree but forcing energy-critical nodes to be leaf
nodes. Like LMST, E-LMST keeps the one-hop neighbor nodes
on the tree as neighbor nodes in the final topology. In [15], two
lifetime-extended dynamic topology control algorithms based
on cooperative communication technology (LDTCC) were pro-
posed. Cooperative communications allows relay nodes to help
the source node forward the same information simultaneously
so as to reduce the power consumption. The algorithms con-
sider both the overall energy cost of maintaining links and cur-
rent available energy of nodes. However, the implementations
of these two algorithms need to support cooperative communi-
cations at the physical layer.

III. NETWORK MODEL AND ROUTING
INFORMATION

In this paper, we study a multi-hop wireless network, which
can be modeled byG(V,E), whereV is the set of nodes andE is
the set of links connecting the nodes inG. The set of nodes and
links in G are accordingly represented byV (G) andE(G), re-
spectively. A link(u, v) ∈ E (G) means nodeu andv can com-
municate with each other directly. Specifically, ifd (u, v) ≤ R,
then a link exists between nodeu and nodev, whered(u, v)
represents the geometrical distance betweenu andv, andR rep-
resents the maximum uniform transmission range of nodes in
the network. In order to successfully communicate with a neigh-
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boring node, each node in the network can adaptively adjust its
transmit power. We assume that each node is equipped with an
omnidirectional antenna.

Let euv represent the (minimal) power required for a node
u to successfully transmit an information unit to another node
v, which is d (u, v) , d (u, v) ≤ R, far away from nodeu. In
this paper, the power consumption model in [5]–[7] is used to
calculate the power consumed for the transmission.

euv = d(u, v)α + c (1)

whereα andc are constants for specific wireless systems and
propagation environments (usually2 ≤ α ≤ 4). In (1), c stands
for the overhead due to signal processing and minimal energyre-
quired for successful reception. In (1), a simplified interference
model is adopted, in which the interference level is independent
of network traffic and the same at all nodes. Moreover,euv is
set to be infinite(euv =∞) if d (u, v) > R. For a given path
p connecting a pair of nodes, the overall power consumed for
sending an information unit along pathp is the sum of the link
powers of its constituent links as follows.

e(p) =
∑

(u,v)∈p

euv. (2)

In this paper, it is assumed that all nodes are aware of its loca-
tion information, which can be obtained via certain localization
techniques or devices, for example, GPS receivers. Further, each
node keeps the location information of all its one-hop neighbor
nodes. Such location information can be obtained via exchang-
ing of hello messages among one-hop neighbor nodes when the
network is initially deployed. If nodes can move, periodical ex-
changing of such hello messages is needed. LetN(u) repre-
sent the one-hop neighborhood set of nodeu ∈ V (G), then
N (u) = {v|v ∈ V (G) , (u, v) ∈ E (G)} + {u}. Let NE(u)
represent the set of the edges between two nodes inN(u), then
NE (u) = { (x, y) | (x, y) ∈ E (G) ∧ x, y ∈ N (u)}.

IV. PROPOSED ALGORITHM

In this section, we propose an energy-efficient localized
topology control algorithm, which is aimed to achieve the fol-
lowing design objectives: (1) Reduce the transmission power of
the network nodes, (2) prolong the network lifetime. In order
to achieve these two goals simultaneously, we consider how to
maximally avoid overusing those links between energy-critical
nodes to undertake the task of relaying packets, if possible.

The proposed algorithm is designed to enhance the LMST al-
gorithm, which creates sparser graph via minimizing the trans-
mission powers of nodes. To ease the presentation, our algorithm
is referred to as X-LMST. X-LMST takes the energy-criticality
of links into consideration when building local MST via local-
ized topology control. However, it should be noted that our al-
gorithm design in this paper can also co-work well with other
localized topology control algorithms (e.g., LSPT [8], R&M[9],
etc.).

One key issue in X-LMST is how to determine the energy
criticality of a link in the network. To achieve this goal, a new
metric is introduced. Specifically, in order to determine whether

a link is energy-critical, the energy status of the two endpoint
nodes of the link needs to be inspected. An intuition is that if
one of them has extremely low energy, no matter how high the
residual energy the other node is, the link should be considered
energy-critical. The detail about the calculation of the energy
cost of each link in the network will be presented in subsection
IV-A.

In X-LMST, each nodeu ∈ V (G) builds a local energy-
efficient minimal spanning tree covering all the nodes in itsone-
hop neighborhood. In this process, those energy-critical links
are maximally avoided to be used for prolonging the network
lifetime. Specifically, if there are energy-critical linksin u’s
one-hop neighborhood,u will remove all of them and apply the
LMST algorithm to the remaining graph to generate a minimal
spanning tree. If the calculated graph fails to make all nodes
∈ N (u) be connected, nodeu will recover those previously-
removed links and in the decreasing order of residual-energy-
based link cost (which is relevant to the residual energy of two
endpoints of each of the links, see (3) and related explanation
for details), until a spanning tree covering all the nodes inits
one-hop neighborhood is built. After building the tree, node u
chooses its one-hop neighbors on the calculated tree as its new
neighbors under localized topology control. The final graphre-
sulted by X-LMST is the union of the individual topologies cre-
ated by different nodes.

The X-LMST algorithm in this paper is to some extent similar
to E-LMST[10] in terms of energy-criticality avoidance. How-
ever, E-LMST focuses on energy-critical node avoidance while
X-LMST focuses on energy critical link avoidance by defininga
new link cost function to characterize the energy status of each
link, which is expected to achieve further prolonged network
lifetime.

A. Energy Critical Link Determination

In this subsection, we describe how each node determines
whether a link in its one-hop neighborhood is energy critical or
not. LetEmax denote the full energy amount of a node andEx

denote the residual energy of a nodex, x ∈ V (G). The full en-
ergy space ofEmax is divided intoL (L > 1) equal intervals.L
is a network parameter. The energy level of a nodex is denoted
byLx, whereLx = ⌈L× Ex/Emax⌉.

For a link(x, y) ∈ E (G), a new metric is defined (denoted by
ERGxy) to characterize the energy status of the link as follows.

ERGxy = ln (Lx × Ly) . (3)

This new metric has the following salient properties: (1) itis
symmetrical, i.e.,ERGxy = ERGyx; (2) The metric mono-
tonically increases withEx or Ey; (3) The first order partial
derivative of the metric monotonically decreases. Becauseof
these properties,ERGxy is expected to properly reflect the en-
ergy starvation situation of link(x, y). As mentioned above, the
energy status of the two end nodes of a link decides whether the
link is energy critical or not. Meanwhile, because of the above
third property, a change due to a lower energy level can causea
greater change inERGxy than that due to a higher energy level,
which makes the dropping of low energy level cause big change
in the link energy criticality metric than that by a high energy
level.
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We define an energy-critical ratioK (e.g.,K = 20), which
meansK percent of the links in the neighborhood of a node with
the lowestERGxy are considered to be energy-critical. The
energy-critical value associated with a nodeu ∈ V (G), de-
noted byERGC

u , is the threshold foru such that those links
in NE (u) with anERGxy smaller thanERGC

u are said to be
energy-critical links. Each nodex ∈ V (G), has its ownERGC

x ,
which is the energy level of the link hitting the energy-critical
ratio among the links in the node’s one-hop topology.

Algorithm 1 A nodeu uses X-LMST to calculate its local spanning tree

Input: Nodeu, energy thresholdERGC
u , graphGu;

Output: Tu, NSu

1: Let Gu = (Vu, Eu), where Vu = N (u), Eu =
{(x, y) | (x, y) ∈ NE (u) , ERGxy > ERGC

u }
2: ER

u = {(x, y) | (x, y) ∈ NE (u) , ERGxy ≤ ERGC
u }

3: A← ∅ //An empty tree is created
4: for each vertexx ∈ Vu do
5: MAKE-SET(x)

//Create|Vu| individual trees, where|Vu|means the number
of nodes inVu

6: end for
7: Sort the links inEu in the non-decreasing order by link

power
8: for each link(x, y) ∈ Eu do
9: if FIND-SET(x) 6= FIND-SET(y) then

//Check whetheru andv are the same tree
10: A← A ∪ {(x, y)}
11: UNION(x,y)

//Merge the two trees to whichu andv belong
12: end if
13: end for
14: Sort the links inER

u in the non-increasing order by the
ERG-based link cost in (3).

15: for each link(x, y) ∈ ER
u do

16: if FIND-SET(x) 6= FIND-SET(y) then
17: A← A ∪ {(x, y)}
18: UNION(x,y)
19: end if
20: end for
21: Build Tu based onA
22: NSu ← The set of one-hop neighboring nodes onTu

B. Algorithm Design

After determining the value ofERGC
u in X-LMST, a

node u ∈ V (G) can build its one-hop topology,Gu =
(Vu, Eu), where Vu = N (u), Eu = {(x, y) | (x, y) ∈
NE (u) , ERGxy > ERGC

u }. Then, nodeu builds the minimal
spanning tree (MST)Tu of Gu. The cost of a link(x, y) ∈ Eu

is the link power associated with the link. Algorithm 1 shows
the pseudo codes for X-LMST. In Algorithm 1, line 1 is to pre-
pareu’s one-hop topology using those non-energy-critical links
and line 2 is to keep the set of energy-critical links. Lines 3–13
are to build the MST (in terms of link power) using those non-
energy-critical links. The codes between lines 3–13 are almost

Fig. 1. An example illustrating how LMST and X-LMST work, respec-
tively.

verbatim to that for Kruskal’s algorithm [16]. Lines 14–20 are
to continue the MST construction (if the resulting tree structure
by lines 3–13 has not covered all nodes inVu). However, in this
process, links with abundant energy have priority to be used(see
lines 14–15) instead of low link power as done in the process be-
tween lines 9–12). Line 21 builds an MSTTu for nodeu and line
22 returns the new neighbor set foru.

To maintain a correct neighbor set in dynamic networks, each
node can adaptively update its neighbor set as its neighboring
nodes move or the costs of link(s) in its one-hop neighborhood
change. After implementation of X-LMST, the individual local
graph at a nodeu is G1

u =
(

V 1
u , E

1
u

)

, whereV 1
u = NSu + {u}

andE1
u = {(x, u) ∈ E (G) |x ∈ NSu}. The final graph resulted

by X-LMST is the union of the individual local topologies cre-
ated by different nodes in the network.

Fig. 1 shows an example illustrating how X-LMST and LMST
work, respectively, for the central nodeo to compute its local
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Fig. 2. Comparison of average network lifetime versus node density.

spanning tree on its one-hop neighborhood. In the figure, the
number in a circle for each node represents the energy level of
the node. In this example, nodeo builds the localized spanning
treeTo using LMST and X-LMST, respectively. In this exam-
ple, nodeb is considered to be energy-critical because it has the
lowest energy level ino’s one-hop neighborhood. For LMST,
nodeo builds an MST using link power as the link cost. In this
case, nodeb will have to undertake the forwarding task between
o and {d,e}, so LMST is not energy-efficient. In contrast, X-
LMST provides a better choice than LMST. Link(d, b) is con-
sidered energy-critical because nodesd andb have relatively low
energy level. Thus, link(d, b) is ignored in the process of tree
construction. Link(o, d) has relatively highERGod and is thus
selected to buildTo. As a result, X-LMST shows better capa-
bility in avoiding using energy-critical nodes and balancing the
energy draining.

The computational complexity of X-LMST can be deduced
as follows. Lines 1–3 takeO(1) time. Lines 4–6 takeO(n)
time, wheren represents the number of neighbor nodes ofu
in G. Lines 7 and 14 takeO(m logm) time in total, where
m represents the number of links inu’s one-hop neighbor-
hood in G. The “for” loop between lines 8–13 and that be-
tween lines 15–20 takeO(m) time in total. Lines 21–22 take
O(1) time. Therefore, the overall computational complexity by
X-LMST is O(m logm). Sincem < n2, we havelogm =
O (logn). Thus, the overall computational complexity of X-
LMST is thusO(m logn).

C. Add Reverse Edge

X-LMST may create graphs containing unidirectional edge(s)
like E-LMST and LMST. In [7], it is proved that either deleting
the unidirectional edge or add the reverse edge will not affect
the network connectivity. Here, we choose to add reverse edge
if unidirectional edge occurs, in order to provide more routing
redundancy for the upper-layer energy-efficient routing proto-
col. Although adding reverse edge(s) will result in greaternode
degree, we believe that those added reverse edges can offer more
routing redundancy/opportunity to the routing layer and there-
fore improve the network lifetime performance and also load
balancing capability.

V. SIMULATION RESULTS

In this section, we conduct extensive simulations for perfor-
mance evaluation. We simulated the following three algorithms:
X-LMST, E-LMST [10], and LMST [7]. On top of the topolo-
gies resulted by different algorithms, min-hop routing wasused
for route discovery for each communication request. Min-hop
routing returns a path, which connects a pair of source and des-
tination node and contains the least number of nodes. Actually,
the maximum residual energy routing protocol, which returns
the path with the highest residual energy, was also implemented
for route discovery, and no obvious difference in network life-
time performance was observed. Note that a path’s residual en-
ergy is determined by the node with the least residual energyon
the path. In the simulations, the following three measures were
compared: Network lifetime, which is defined as the time when
the first node in the network runs out of its energy; average trans-
mit radius; and average node degree. Our event-driven simulator
was developed using C++.

In the simulations, we used the energy model, which was also
used in [9], [10], [17], according to which the power consumed
between two neighbor nodes isdα + c, whered is the distance
between the communicating nodes, andα andc are constants. In
[9], Rodoplu and Meng adopted the model withd4+2×108 (re-
ferred to as the RM model). For this model, the maximum trans-
mission rangeR is 250 m. Reference [17] adopted the model
with d2 + 500 (referred to as the HCB model). For this model,
R = 50 m. In this paper, we shall use the above settings ofα
andc in our simulations.

In the simulations, nodes are randomly distributed in a square
area. The number of the nodes in a network is always 300,
and the size of the square area where the nodes are deployed
is calculated to meet desirable node density (from 8 to 24
nodes per communication zone). Each link is associated with
a power value normalized over the maximum link transmission
power. Each node is initially allocated a randomly selectedof
energy from the normalized range of [4,000, 8,000]. In our sim-
ulations, only those connected graphs are considered.

There are always 10 connections being routed at any
time. Each connection has one source and one destination,
which are selected randomly. We assume that the MAC layer is
ideal, which can guarantee that packets can always be delivered
without loss. Each connection lasts for a random period of time
in the range of [5, 16] s. The packet arrival rate per connection
is four packets per second.



376 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGUST 2014

A
v
g

. 
tr

a
n

s
m

is
s
io

n
 r

a
d

iu
s
 (

m
)

A
v
g

. 
tr

a
n

s
m

is
s
io

n
 r

a
d

iu
s
 (

m
)

d

m

m

d

Fig. 3. Comparison of average transmit radius versus node density.

In the simulations, the full energy space is divided into 20
equal intervals (i.e.,L = 20) and 18% of links with the low-
est link costs in the neighborhood of a node are consider to be
energy critical. These parameters were decided after a serial of
simulations as follows. First, 15% of the links in a node’s one-
hop neighborhood were fixed to be energy critical, then we tried
different values of energy-dividing interval (L = 5, 10, 15, 20,
and 25) in the simulations. We found that when the full energy
space is divided into 20 intervals, X-LMST has the best perfor-
mance. After the best value of energy-dividing levelL was de-
termined, we chose different energy critical ratios (10%, 11%,
12%,· · ·,30%) in the simulations. The results show that when
energy critical ratio is set to 18%, X-LMST performs the best.

Fig. 2 compares the average network lifetime performance by
different algorithms with varying node densities. In Fig. 2, it is
seen that X-LMST performs the best in terms of average net-
work lifetime among the three algorithms. The simulation re-
sults shows that (1) X-LMST can prolong the network lifetime
over 40% as compared with LMST; (2) X-LMST outperforms
E-LMST (up to 10%) in terms of average network lifetime. In
general, the average network lifetime by each of the three algo-
rithms increases with node density. This is reasonable because
the number of equal-cost min-hop paths connecting a node pair
increases with node density, which can lead to increased load
balancing and energy draining capability in the network and
thus prolonged network lifetime. In addition, the advantage of
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Fig. 4. Comparison of average node degree versus node density.

X-LMST also increases with node density. This is because more
choices can be provided to avoid overusing the energy-critical
links in the network as node density increases. It should be noted
that the network lifetime performance by E-LMST is slightly
inferior to that reported in [10] because our implementation of
E-LMST in this paper considers the control overhead for energy
criticality threshold calculation, which causes a lot of network-
wide dissemination of nodal energy level signaling messages
(triggered as node energy level change).

Fig. 3 compares the average transmit radius by different al-
gorithms versus node density. The transmit radius is definedas
the distance between a nodeu and its farthest neighbor in its
neighbor setNSu. The average transmit radius is the sum of the
transmit radiuses (by different algorithms) of all nodes inthe
network over the number of nodes. Fig. 3 shows that LMST
has the lowest average transmit radius; X-LMST is the high-
est; E-LMST is in between. This meets our expectation since
X-LMST allows nodes to keep some long links while removing
some short but energy critical links to achieve energy-draining
balancing in the network.

Fig. 4 compares the performance of different algorithms in
terms of average node degree versus node density. LMST has
the smallest average node degree because it does not consider
the remaining energy of nodes. In contrast, X-LMST has the
largest average node degree among the three algorithms.

In summary, X-LMST performs the best in terms of average
network lifetime as compared with E-LMST and LMST at cer-
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tain penalty in average transmit radius and average node degree
performance.

VI. CONCLUSION

In this paper, we have proposed a new localized energy ef-
ficient topology control algorithm X-LMST for wireless multi-
hop networks. It tries to avoid overusing those energy-critical
links in building a reduced network topology graph at each
node. In this way, energy-critical nodes/links are discouraged
from being overused and the network lifetime is thus pro-
longed. Simulation results show that X-LMST can greatly pro-
long the network lifetime as compared with existing work. X-
LMST is simple, efficient, localized in nature, and is thus tobe
practical to be used for wireless multi-hop networks.
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