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Game-Theoretic Analysis of Selfish Secondary
Users in Cognitive Radio Networks

Halefom Kahsay, Yalew Zelalem Jembre, and Young-June Choi

Abstract: In this paper, we study the problem of selfish behav-
ior of secondary users (SUs) based on cognitive radio (CR) with
the presence of primary users (PUs). SUs are assumed to contend
on a channel using the carrier sense multiple access with collision
avoidance (CSMA/CA) and PUs do not consider transmission of
SUs, where CSMA/CA protocols rely on the random deference of
packets. SUs are vulnerable to selfish attacks by which selfish users
could pick short random deference to obtain a larger share ofthe
available bandwidth at the expense of other SUs. In this paper,
game theory is used to study the systematic cheating of SUs in
the presence of PUs in multichannel CR networks. We study two
cases: A single cheater and multiple cheaters acting without any
restraint. We identify the Pareto-optimal point of operation of a
network with multiple cheaters and also derive the Nash equilib-
rium of the network. We use cooperative game theory to drive the
Pareto optimality of selfish SUs without interfering with the ac-
tivity of PUs. We show the influence of the activity of PUs in the
equilibrium of the whole network.

Index Terms: Cognitive radio network, game theory, Nash equilib-
rium, Pareto optimality.

I. INTRODUCTION

WIRELESS technology relies on frequency spectrum as a
fundamental resource. While frequency allocation charts

reveal that almost all frequency channels have already beenas-
signed, traditional static spectrum allocation strategies cause
temporal and geographical holes [1] of the spectrum usage in
licensed channels. Cognitive radio (CR) is viewed as a novel
approach for improving the utilization of this precious natural
resource, the radio electromagnetic spectrum [2]. CR systems
have two types of users: Primary users (PUs) and secondary
users (SUs). PUs are not aware of the SUs’s behavior and PUs
do not need any specific functionality to coexist with SUs who
are typically not licensed and responsible for avoiding interfer-
ence with PUs’ transmissions.

Medium access control (MAC) of a CR system is usually
analyzed based on the Markov chain of carrier sense multiple
access with collision avoidance (CSMA/CA) [3]. In this paper,
we also adopt a Markov model and embed channelization into
CSMA/CA by which SUs operate on multiple channels with low
priority to provide strict quality of service (QoS) guarantee for
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PUs. Since the SUs use CSMA/CA, their transmission relies on
random deference of packets for efficient use of the spectrum
hole. Although it is assumed that all the SUs respect the rules
of the protocol, there is a possibility of selfish SUs due to the
programmable nature of the MAC. While selfish SUs avoid in-
terference with PUs, they may access the spectrum hole aggres-
sively.

We use game theory, which is a very powerful tool to study
the selfish behavior of players. We elaborate on the behaviorof
such selfish SUs and its effect on the system by using the game
theory. We assume the secondary users as players, the through-
put they get as their payoff, and the size of the contention win-
dow as their move. We obtain the Pareto-optimal and the Nash
equilibrium point of operation of such a system.

We organize our paper as follows. Section II addresses re-
lated work. In Section III, we describe our system model. In
Section IV, we derive the throughput of SUs in the presence of
PUs. In Section V, we present a game theoretic model of the
system, and in Section VI we show numerical results. Finally,
Section VII concludes the paper.

II. RELATED WORK

The study of CSMA/CA deference mechanism through game
theory models has been found in literatures. The earliest work is
found in [4]. However, this work does not consider CR environ-
ment. Hence, the rest of this section focuses on CSMA/CA for
CR systems. In [5], the authors propose a MAC scheme that em-
beds physical channels in a multichannel CSMA/CA network to
provide strict QoS to PUs. For PUs, physical channels are pro-
vided using channelization method to ensure QoS whereas SUs
are assumed to follow the CSMA/CA protocol. This scheme
does not consider that any SU can cheat and get more through-
put at the expense of other SUs. This problem will be addressed
in our paper.

In [6], the authors study selfish behavior in CSMA/CA net-
works using the game theory and propose a distributed protocol
to guide multiple selfish nodes to Pareto-optimal Nash equilib-
rium. The authors computed the Pareto-optimal point of oper-
ation of such a system, and study the equilibrium of dynamic
games. Besides that, this work also proposed detection and a
punishment technique against cheaters.

In [7], a predictable random backoff (PRB) algorithm is pro-
posed to mitigate the impacts of selfish nodes on the network
performance and in particular on well-behaved nodes. This al-
gorithm is based on minor modifications of the IEEE 802.11
binary exponential backoff (BEB) and forces each node to gen-
erate a predictable backoff interval. Nodes that do not follow
the operation of PRB are easily detected and isolated. In [8], a
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Fig. 1. Network setup of the proposed model.

game model is also proposed to interpret the IEEE 802.11 dis-
tributed coordination function mechanism. They design a sim-
ple Nash equilibrium backoff strategy to present a fairnessgame
model. In [8], a game-theoretic approach is used to study selfish
MAC-layer misbehavior under CSMA/CA, where the obtained
bandwidth shares are considered as payoffs in a non-cooperative
CSMA/CA game.

All the above references study the behavior of selfish users
in CSMA/CA protocol. They all assume that the entire nodes
have the same quality of service requirement but do not consider
the presence of PUs. In our paper, we address the influence of
PUs in addition to cheating behavior of SUs. We first derive the
throughput of SUs in the presence of PUs and then investigate
the cheating behavior of SUs.

III. SYSTEM MODEL

Our network model consists of an access point and two tiers
of users: The PU tier and SU tier as shown in Fig. 1. SUs are
classified into well-behaved and cheating users. We assume that
PUs have guaranteed QoS as explained in [5] and each user
identifies its user type (primary or secondary) using the reserved
field of association frames. We also assume that there is no hid-
den terminal problem. SUs use CSMA/CA based protocol to re-
solve the contention at MAC layer whereas channels assignedto
PUs are orthogonal in multiple frequency channels. We consider
orthogonal frequency hopping sequences in multiple frequency
channels, e.g., Latin square, which exploits frequency diversity
to avoid channel fading and interference. This model operates
on multiple channels and SUs can randomly select an operating
channel after sensing all channels.

The throughput of PUs is obtained under the assumption of no
sensing error. Once they are admitted into the network, theyjust
transmit their frames in the channels assigned by the AP. The
Latin square hopping sequence is used to generate the probabil-
ity of a PU for each secondary frame interval uniformly without
a priori knowledge of hopping pattern at any SU [5]. Suppose
the probability of each frequency channel being occupied bythe
transmission of a PU,Pp, is independent and identical of one
another. It is a measure of the primary activity and is given by

Pp =
Np

NCH
(1)

whereNp is the number of PUs andNCH is the number of chan-
nels under the assumption thatNp ≤ NCH. The probability that

Table 1. Summary of notations and symbols.

Notation Representation of the symbol or symbol
Pp The probability that each channel is occupied by PU
Pb The blocking probability of channels due PUs activities
NCH Number of channels
Np Number of PUs
Ns Number of SUs
(i, j) state wherei represents

backoff stage andj represents backoff counter
W Contention window size
Wj Contention window size at the backoff stagej
CWmax Maximum Contention window
CWmin Minimum contention window
S(t) Stochastic backoff process timet
b(t) stochastic process representing back of stage
p Collision probabilty
N1ch

s Number of SUs in a single channel
τ Access probability of each node
bi,j the stationary probability of state(i, j)
P s The probability successful transmission
P id The probability channel idle
P c The probability channel collision
S Throughput per channel
L Packet length
T s The average time needed to transmit packet lengthL
T id Duration of idle
T c Time spent in collision
N Number of secondary Users
I Numbers of cheaters
Ui(s) Pay of function playeri for strategys
τci Cheaters access probabilty
τwi Well behaved access probabilty
ri throughput for playeri
M Maximum throughput that can reached by the cheaters
λ, α, β Lagrangian multipliers

all channels are busy due to PUs depends onPp and is given by

Pb = PNCH

p . (2)

IV. THROUGHPUT OF SECONDARY USERS IN THE
PRESENCE OF PRIMARY USERS

In this section we determine the throughput of SUs in the
presence of PUs. The throughput obtained in this section will
be used to comupte the the utilization function in Section V.We
modify the CSMA/CA analysis for the SUs is modified from
[3]. For a given node (i.e., SU), each state is represented as
(i, j) wherei is the backoff stage andj is the current backoff
counter. Letb(t) be the stochastic process representing the back-
off time counter for a given node. It has minimumCWmin =
W and maximumCWmax = 2mW wherem represents the
maximum backoff stage andW represents a contention win-
dow. The stochastic backoff process representing the backoff
stage(0, · · ·,m) of the SU at timet is given bys(t). At each
transmission attempt, every packet collides with a constant and
independent probability ofp regardless of the number of retrans-
missions.

The bi-dimensional process {s(t), b(t)} is modeled with
discrete-time Markov chain. It represents the operation ofSUs
in one channel among multi-channels in the presence of PUs;
therefore we need to deriveN1ch

s , the number of SUs in a single
channel statistically. The average number of SUs in one avail-
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Fig. 2. Markov chain model for SUs based on CSMA/CA.

able channel is given by

Pb = PNCH

p , (3)

N1ch
s =

Ns

NCH(1− Pp)
(4)

whereNCH(1 − Pp) is the average number of available free
channels. The state transition probability for the Markov chain
in Fig. 2 is given by

P{j, k|j, k + 1} = 1− Pb, k ∈ (0,Wj − 2), j ∈ (0,m)

P{j, k|j, k} = Pb, k ∈ (0,Wj − 1), j ∈ (0,m)

P{0, k|j, 0} =
p

Wj

, k ∈ (0,Wj − 1), j ∈ (0,m)

P{m, k|m, 0} =
p

Wm

, k ∈ (0,Wm − 1)

(5)

whereWj represent the contention in thejth stage. The first
equation in (5) accounts for the fact that, when a SU has a pos-
itive backoff counter value ofk + 1, he decreases his backoff
counter value if the channel is not occupied by a PU with proba-
bility 1−Pb. If the channel is occupied by a PU with probability
Pb, the SU maintains his backoff counter value as the same value
k as shown by the second equation. The third equation accounts
for the fact that a new packet following a successful packet trans-
mission starts with backoff stage 0, and thus the backoff is ini-
tially uniformly chosen in the range(0,W0 − 1). The last two
equations model the system after an unsuccessful transmission.

Let the stationary probability of state(i, j) be denoted bybi,j .
A transmission occurs when the backoff time counter is equalto
zero. Thus, we can write the probability that a node transmits in
a randomly chosen slot time as:

τ =

M−1
∑

i=1

bi,j. (6)

For the above Markov chain, the closed-form solution forbi,0 as
a function of p is obtained as follows. First, we can write the
stationary distribution of the chain forbi,0, bm,o, andbi,k:















bi,0 = pi

1−Pb
b0,0, 0 < i < m

bm,0 =
pib0,0

(1−Pb)(1−p) ,

bm,0 = Wi−k
Wi(1−Pb)

pbi−1,0. 0 6 k 6 Wi−1.

(7)

The first and second expressions in (7) come from the fact that
bi−1p = bi,0/(1− Pb) for 0 < i < m and bm,0 = p

1−p
b0,0

wherebm−1p = bi,0/(1− Pb). The third equation can be ob-
tained by considering that

∑m

i=0 bi,0 = b0,0/(1− p) and taking
the chain regularities into account(for k ∈ (1, CWi − 1)). We
have

bi,k=
CWi − k

CWi(1 − Pb)
=











(1− p) =
∑m

j=0 bj,0, i = 0.

pbm,0, 0 < i < m, 0 ≤k≤ Wi−1.

p(bm−1,k+bm,0), i=m, 0 ≤k≤ Wi−1.
(8)
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By imposing the normalization condition and considering (8),
we can obtainb0,0 as a function ofp:

1 =

m
∑

i=0

bi,0

CW1−1
∑

k=0

CWi − k

CWi(1− Pb)
,

b0,0 =
2(1− Pb)(1− 2p)(1− p)

(Wmin + 1)(1− 2p) +Wminp(1− (2p)m)
. (9)

Therefore, we get the access probability of the SU as follows:

τ =
M−1
∑

i=1

bi,j =
b0,0
1− p

=
2(1− Pb)

Wmin + 1 +Wminp
∑m−1

k=0 (2p)k
(10)

where p is the collision probability of a packet in a given channel
and is given as follows:

p = (1− (1− τ)N
1ch−1

s ) + (1− τ)N
1ch−1

s Pb. (11)

The throughput of the given channel is used to calculate the
total system throughput over all channels considering the proba-
bility Pp of a channel being busy due to PUs’ transmission. The
probability of successful transmission, idleness, and collision,
denoted byP s, P id, andP c, respectively, are given by

P s = N1ch−1
s τ(1 − τ)N

1ch−1

s (1− Pb),

P id = N1ch
s τ(1− τ)N

1ch−1

s , (12)

P c = 1− P s − P id.

Assuming the probability that a channel can be used by SUs
is (1 − Pp), the throughputS per channel is finally given by

S =
PsL(1− Pp)

P sT s + P cT c + P idT id
(13)

whereT s is the average time needed to transmit a packet of
sizeL (including the inter-frame spacing periods),T id is the
duration of the idle period (a single slot) andT c is the average
time spent in the collision.

V. GAME THEORETIC MODEL

In this section, we introduce some definitions and the termi-
nologies from non cooperative game theory, which used in our
paper. In many situations the theory of non cooperative games
studies the behavior of selfish players where each player’s op-
timal choice may depend on his forecast of the choice of his
opponent. The word “non cooperative” means that the players’
choices are based only on their perceived self interest and they
do not try to find an agreement with other players [9].

In this section we analyze the behavior of misbehaving SUs
in the presence of PUs using strategic (normal) form games. A
game in strategic form has three elements: The set of players
i ∈ N, which we take to be finite setN = {1, 2, · · ·, N}, the
pure-strategy spaceSi of each playeri, and payoff functionsui

that give playeri utility ui(s) for each profiles = (s1 · sI) of
strategies. We denote all players other than playeri by “−i” and
their strategy profile bys−i = (s1, · · ·, si−1, si+1, · · ·, sN). In
our model, the players are the SUs. The pure strategy of each
playeri is the contention windowWi and the utility function of
each player is given by throughputri. We assume the cheaters in
our model to be rational, i.e., they want to maximize their own
benefit. In this particular context, the cheaters want to maximize
the average throughput they receive by changing the contention
windowWi. In our model there areN players out of whichI
are cheaters.

A. Variation of Throughput withWi

The throughput achieved by a given nodei, which is the av-
erage information payload transmitted in a time slot over the
average length of a time slot can be computed as follows:

rci =
P i
sL

P sT s + P cT c + P idT id
(14)

whereP s
i = τ

(c)
i Πj 6=i(1 − τ

(c))
j (1 − τ (w))(N−I)(1 − PB) is

the probability that nodei successfully transmits during a ran-
dom time slot.L is the average packet payload size;P s =

Σi∈Iτ
(c)
i Π(j 6= i)(1 − τ

(c)
j )(1 − τ (w))(N−I)(1 − PB); T s

is the average time needed to transmit a packet of sizeL (in-
cluding the inter-frame spacing periods);P id = Πi∈I(1 −

τ
(c)
i )(1− τ (w))(N−I)(1− PB) is the probability of the channel

being idle;T id is the duration of the idle period (a single slot);
P c = 1−P s −P id is the probability of collision; andT c is the
average time spent in the collision. Note thatP s+P c+P id = 1
has to be satisfied. Since cheateri does not respect the backoff
procedure of IEEE 802.11 (i.e.,m = 0 in equation (10), its
channel access probability in the presence of PUs is given by

τ
(c)
i =

2(1− Pb)

Wi + 1
(15)

whereWi is the cheateri’s contention window size. The channel
access probability for well-behaved nodes,τ

(w)
j , is

τ
(w)
j =

2

Wmin + 1 + p(w)WminΣ
m−1
k=0 (2p(w))k

(16)

where

p(w) = (1− (1− τ (w))N−I−1Πi∈I(1− τ
(c)
i ))

+ ((1 − τ (w))N−I−1Πi∈I(1− τ
(c)
i ))Pb. (17)

Note thatτ (w)
j is the same for all the well-behaved nodes; so we

setτ (w)
j = τ (w). After arithmetic manipulation of the through-

put (14) we obtain the following expression for throughputrc(i)
for cheateri:

rc(i) =
τ
(c)
i c

(1)
i

τ
(c)
i c

(2)
i + c

(3)
i

(18)

where

c
(1)
i = p−iL,

c
(2)
i = p−i(T

s − T id − s−i(T
s − T c),

c
(3)
i = (1 − s−i − p−i)T

c + s−iT
s + p−iT

id
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wherep(−i) ands(−i) are substituted as follows:

p(−i)=
∏

j∈I\{i}

(1 − τ
(c)
j )(1 − τ (w))(N−I)(1− PB),

s(−i)=
∑

j∈I\{i}

τ
(c)
j

∏

k∈I\{i,j}

(1−τ
(c)
k )(1−τ (w))(N−I)(1−PB).

Therefore the expected throughput of each node is a strictlyde-
creasing function in terms ofWi for a specific value ofPb, the
blocking probability of PUs. From (18), each node can obtain
various throughputs by varying its contention windowWi. This
can be shown as follows by assumingWi for a constantPb. By
taking the first derivative in (18), we obtain the following de-
creasing function:

∂rci
∂Wi

=
∂rci

∂τ
(c)
i

∂τ
(c)
i

∂Wi

=
c
(1)
i c

(3)
i

(τ
(c)
i c

(2)
i + c

(3)
i )2

(19)

The above equation is verified by our simulation using MAT-
LAB. A network consists ofN = 20 nodes randomly spread
over an 100 m× 100 m area. We assume that all the nodes are
within a receive range of each other. We use the parameters for
the IEEE 802.11 protocol that are chosen according to the IEEE
802.11b standard [10] as given in Table 2. It is also assumed
that no RTS/CTS handshake is used. Fig. 3 plots the through-
put obtained by a random cheateri, as well as by each well-
behaved node for different values ofWi and different value of
Pb. Fig. 3 shows that a cheater can increase his expected payoff
(received throughput) at the expense of other SUs by choosing a
small value ofWi. But its payoff decreases when the channels
are busy due to PUs. Therefore the cheaters can only increase
their expected payoff at the expense of other well-behaved SUs’
throughput but not at the expense of PUs’ throughput.

B. Nash Equilibrium of the Game

In normal-form game, Nash equilibrium is a profile of strate-
gies such that each player’s strategy is an optimal responseto
the other players’ strategies [9].

Definition 1 (Nash equilibrium) A strategy profileW =
(W1, · · ·,WI), which is the set of contention window values
used by players, is a Nash equilibrium if and only if, for every
playeri = 1, · · ·, I

ri(Wi,W−i) ≥ ri(W
′
i ,W−i). (20)

According to (9), Nash equilibrium of our game isW = 1. A
node gains the highest throughput if its access probabilityis
equal to1− Pb which meansW = 1. If only one node chooses
W = 1 and the other nodes chooseW > 1, the node with
W = 1 gains positive throughput while the throughput of other
nodes are zero. On the other hand, if more than one node choose
W = 1, the throughput of all nodes will be zero. However,
since we assume that each cheater tries to attain as high through-
put as he can, it is most likely that more than one cheater sets
Wi = 1. Therefore, this equilibrium is not efficient. The Nash

Fig. 3. Throughput for 20 nodes (out of which one is a cheater)in terms of
various values ofPb.

equilibrium in this game is different from Nash equilibrium
in the static game of [6], because it considers the presence of
PUs. This equilibrium is shown in Fig. 3. The throughput of the
cheater is maximum whenWi = 1. His throughput decreases
when PUs occupy the channels.

C. Unique, Fairness and Pareto Optimal Point of the Game

In general a desirable solution for a game should exhibit the
following three properties: (i) Uniqueness – this is to avoid
uncertainties with respect to what solution each player should
choose; (ii) fairness – the solution should result in a fair dis-
tribution of system throughput without interfering with PUs’
throughput; (iii) Pareto optimality – the solution should result in
a Pareto optimal allocation of the throughput without interfering
the PUs [10]. Based on the above analysis there are two types of
Nash equilibrium points. One of the points is found when we
have only a single cheater which gets all the payoffs and the rest
of the SUs get zero payoffs. This results in unfair distribution
of the throughput. The second equilibrium is found when every
cheater simultaneously tries to access the channel all the time,
by making itsWi = 1 and then causing repeated collisions. This
is clearly inefficient and leads us to a question whether anything
better can be achieved or not.

In order to derive a solution which is unique, fair and opti-
mal, we use the Nash bargaining framework (NBF) [11]. An
N -player Nash bargaining game consists of a pair(U, c), where
U ⊆ R+,

N is a compact convex set andu ⊂ U . SetU is
a feasible set and its elements give utilities that theN players
can simultaneously accrue. Pointu is a disagreement point that
gives the utilities that theN players obtain if they decide not to
cooperate. The set ofN agents will be denoted byB and the
agents will be numbered1, 2, · · ·, N . Game(U, u) is said to be
feasible if there exists a pointv ∈ U such that∀i ∈ I, ri > ui,
and infeasible otherwise.

The solution to a feasible game is the pointv ∈ N that satis-
fies the following four axioms.

1. Pareto optimality: No point in U can weakly dominatev.
2. Invariance under affine transformations of utilities: If
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the utilities of any player are redefined by multiplying by a
scalar and adding a constant, then the solution to the transformed
game is obtained by applying these operations to the particular
coordinate ofr.

3. Symmetry: If the players are renumbered, then it suffices
to renumber the coordinates ofr accordingly.

4. Independence of irrelevant alternatives: If r is the solu-
tion for (U, u), andQ ⊆ Rn

+ is a compact, convex set satisfying
u ∈ Q andv ∈ Q ⊆ U , thenr is also the solution for(Q, u).

Definition 2 If a game(U, u) is feasible then there exists a
unique point in N satisfying the axioms stated above. This is
also a unique point that maximizes

∏

i∈U (ri − ui), overr ∈ U .
Our game in cooperative game considers the secondary users

which are cheaters in the presence of primary users. In this game
the set of the joint feasible payoffs is given as follows.

U = {(rc = (rc1, · · ·, r
c
I) : r

c
i = fi(W ), i ∈ I,W ∈ S} (21)

where the functionsfi(.) are derived from (14) and (16). The
disagreement point of the Nash bargaining frame work is a fixed
disagreement vectoru = (u1, · · ·, uI). For our model it is rea-
sonable to define for every playeri ∈ I as follows:

u = min
W

−i∈S
−i

max
Wi∈Si

rci (Wi,W−i) = 0.

Therefore, the disagreement point becomes

ui = 0.

This implies that the corresponding strategy profileW is such
that at least two or more players follow the strategyWi = 1.

The above axioms are the sufficient condition for the bargain-
ing problem B to be a unique solution. In addition to these ax-
ioms the payoffs have to be convex and compact (and there ex-
ists at least one feasible point strictly preferable to the disagree-
ment) [12]. However, the set of joint payoffsN in the case of
the game is neither compact nor convex: It consists of a count-
able finite number of pointsrci . The maximization problem for
the bargaining problem(U, u) is given as follows.

maximizeΠi∈I(r
c
i − ui)

subject torci ∈ N (22)

rc ≥ u

In order to make the problem convex function we take the
logarithm of the objective function of (22) and using the fact
ui = 0, ∀i ∈ I we obtain the equivalent maximization problem
[12].

P1 = maximize
∑

i∈I

log{rci (Wi)}

subject torci = fi(W ) (23)

rc ≥ u,

W ∈ S

Using the approach in [12] to solve the optimization prob-
lem we solve (23). Let us define a setY = {Yk : Yk =
∑

i∈I fi(Wi),W ∈ S1 × S2 × · · · × SI ,K = 1, 2, · · ·, wI
max}.

Note that someYk ∈ Y will have the same value (e.g. forI = 4,
vectorsW = {2, 5, 4, 3} andW ′ = {5, 3, 4, 2}) and they are
equivalent by using the operatorYk =

∑

i∈I fi(Wi). By relax-
ing the constraint onP1 and makingW continuous we have the
following problem.

P2 = maximize
∑

i∈I

log{rci (Wi)}

subject to
∑

i∈I

rci ∈ Y (24)

rc ≤ M ,

rc ≥ u

whererci , ∀i ∈ I are continuous variables andM is a maximum
throughput that can be reached by the cheaters. SinceP2 is a
relaxed version ofP1, this yieldsP2 ≥ P1. Therefore solving
(24) means indirectly solving (24). One way of dealing with
P2 is to solve one instance(Yk ∈ Y ) of the problem and then
simply pick the instance that maximizes eachYk ∈ Y and the
corresponding objective function [6]. To solveP2 we define the
corresponding objective function but before that we simplify the
constraint as

∑I

i=1 r
c
i = Yk. The Lagrangian dual of theP2 is

defined as [12]

L(r, λ, α, β) = ΣI
i=1 log{r

c
i (Wi)} − λ(ΣI

i=1r
c
i − Yk)

− ΣI
i=1αi(ui − rci )− ΣI

i=1βi(r
c
i −M). (25)

Using the Karush-Kuhn-Tucker first order necessary conditions
[12], we get

∂L

rci
=

1

rci
− λ+ αi − βi = 0, i = 1, · · ·, I

λ(ΣI
i=1r

c
i − Yk) = 0, λ ≥ 0

αi(ui − rci ) = 0, αi ≥ 0

βi(r
c
i −M) = 0, βi ≥ 0. (26)

We assume there exists a feasible vectorW such that the op-
timal value ofP2, i.e.,

∏

i∈I(r
c
iui) is strictly positive; then

αi = βi, i = 1, 2, · · ·, I. If one cheater makes his contention
windowWi = 1 then the throughputrci = M but the throughput
of the rest of the cheaters will be zero i.e.,rcj = u = 0, ∀j 6= i,
which implies

∏

i∈I(r
c
i − ui) = 0. Using this explanation, (24)

is reduced to the following form:

1

rci
− λ = 0. (27)

Replacing (25) into the first constraint of (24), i.e.,
∑

i∈I r
c
i =

Yk, we finally get:

rci =
Yk

I
. (28)

From (26) we found out that there is a unique solution to the
bargaining problemP1 and is fairly distributed among the SUs.
In this case each SU gets equal throughput; i.e., every cheater
has to send his packets with the same contention window with-
out interfering PUs’ communication. Unlike the solution to(19)
which is Nash equilibrium, the solution in (26) is Pareto optimal
but not Nash equilibrium.
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Fig. 4. Throughput of SUs with varying activity of PUs.

D. Penalizing Mechanism: Towards a Unique and Pareto-
Optimal Nash Equilibrium

In the above section we have determined the desired point of
operation and we now show one way of converging to the point
without interfering with PUs. The main idea of this strategyis a
penalty mechanism by which players can penalize severe devia-
tions of another player [13]. Let us consider two arbitrary SUs, i
andj from the setI. Assume that playeri calculates the penalty
pj to be inflicted on playerj as follows:

pj =

{

rcj − rci , if rcj > rci
0, otherwise.

Therefore the throughput of playerj is rcj −pj = rci and the two
SUs have the same throughput. The penalty mechanism used
is jamming which is explained in details in [6], [13]. In this
scheme if a playeri ∈ I detects the presence of non cooperative
players other than PUs; first it calculates the throughput ofdevi-
ating SUs and if it is higher than optimal throughput it changes
to transmit mode and jams the playerj according the (26).

VI. NUMERICAL RESULT

In this section, we first exhibit numerical results of the
throughput performance of SUs based on (13). Fig. 4 shows the
normalized throughput S per channel versus the number of or-
thogonal channelsNCH when the number of SUs is 20. The pa-
rameters used are listed in Table 2. According to our analysis,
there is a Nash equilibrium point at which all the cheaters have
Wi = 1, i.e., every cheater simultaneously tries to access the
channel all the time, which result in repeated collisions. This is
known as law of commons [9]. At this point all the cheaters get
null throughput. This tells us how much the Nash equilibrium
is inefficient when there are more than one cheaters. Let us con-
sider an ideal scenario whereWi = W and modify it to synchro-
nize with other cheaters in the system. Now the set of the anal-

Table 2. Parameters and values used for analysis.

Parameter name Value
Packet payload 8,184 bits
MAC header 272 bits
PHY header 128 bits
ACK 112 bits + PHY header
Channel bit rate 2 Mbit/s
Propagation delay 1 µs
Slot time 50 µs
SIFS 28 µs
DIFS 128 µs

Fig. 5. Throughput vs. contention window size of cheaters (20 nodes, out of
which 10 are cheaters) forPb = 0.0.

ysis consists of 20 nodes out of which there are 10 cheaters. The
parameters are the same as listed in Table 2. Figs. 5–7 plot the
average throughput obtained by a cheater at different values of
W for different activity of PUs. All the figures show that if
cheaters operate atW = 1 then it will result in network col-
lapse or zero throughput for all cheaters. The throughput ofall
the cheaters also decreases when the PUs are using the chan-
nel. Fig. 5 shows that there exists an optimal point(W = 27)
at which the throughput is maximized for every cheater in this
system.

When PUs’ activity increases in the system, this point remains
the same but the throughput decreases as shown in Figs. 5–
7. But it is not fair since the cheater gets the optimal point at
the expense of the other well-behaved SUs. There is a point at
which all the nodes intersect, which is known as Pareto opti-
mal [9]. A Pareto-optimal point means that it is impossible to
move from that point in such a manner that the payoff enjoyed
by other cheaters does not change. This is shown in (27) as a
result of cooperation between the SUs. Moreover, the payoff
of every cheater is maximized simultaneously. This point, how-
ever, varies with the presence of PUs, as shown in Figs. 5–7. As
PUs’ activity increases, this Pareto-optimal point moves towards
more contention window and the throughput at this point also
decreases.
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Fig. 6. Throughput vs. contention window size of cheaters (20 nodes, out of
which 10 are cheaters) forPb = 0.1.

Fig. 7. Throughput vs. contention window size of cheaters (20 nodes, out of
which 10 are cheaters) forPb = 0.35.

Figs. 8–10 plot the average throughput obtained by cheater
X when it unilaterally deviates from a given equilibrium point
29. As it is shown in the three figures when the user activity
increases the overall throughput of the SUs decreases propor-
tional withPb. After the introduction of the detection, cheaterX
achieves the maximum throughput operating at the given equi-
librium point where all cheaters set their contention window
around to 29. This is predicted in (26), implying that this point is
an equilibrium point where unilateral deviation is not profitable.
Therefore this Nash equilibrium is fair and Pareto optimal.By
making an arbitrary contention window it is possible to create a
Nash equilibrium point by using (27).

Fig. 8. Realizations of penalty through selective jamming for cheaterX with
or without the penalty mechanism forPb = 0.0.

Fig. 9. Realizations of penalty through selective jamming for cheaterX with
or without the penalty mechanism forPb = 0.9.

VII. CONCLUSION

In this paper we have analyzed the problem of cheating be-
havior of SUs in the presence of PUs. In order to accomplish
the final result, first we have analyzed the throughput of SUs in
the presence of PUs using a Markov chain model. Then we have
used a game-theoretic approach to model the cheating behavior
of some SUs. We have used cooperative game theory to find the
optimal point. Jamming is assumed to punish the cheaters. In
all the cases the analysis is done by considering the presence of
the PUs which is the main contribution of this paper.
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