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Linear—Quadratic Detectors for Spectrum Sensing

Ezio Biglieri and Marco Lops

Abstract: Spectrum sensing for cognitive-radio applications may has a structure which is perfectly known (coherent, or medeh
use a matched-filter detector (in the presence of full knowkdge of filter linear detector) or totally unknown (energy quadrate-
the signal that may be transmitted by the primary user) or an e-  tector) [4]. The situation we examine in this paper is interm
ergy detector (when that knowledge is missing). An intermete djate between those two: Here, assuming ghiatincompletely
situation occurs when the primary signal is imperfectly knavn, in - ynown, we use a detector which has the matched-filter and the
which case we advocate the use of a I|near—quad_rapg det_ect(We energy one as special cases: linear—quadratic(LQ) detec-
S.how how th.'s detector can be designed by maximizing its detie tor. Its performance approaches that of the linear detedten
tion, and’.us.mg moment-bound theor.y’ we examine Its rObu.ﬂless the uncertainty on the primary signal is small, and that ef th
to the variations of the actual probability distribution of the inac- ) . . L )
curately known primary signal. guadranc detectgr in the opposite case. Tollllustrate cmf-ﬂ
ings, we use a simple model for the uncertainty, assuming tha
Index Terms: Cognitive radio, linear-quadratic (LQ) detectors, X IS the sum of a perfectly known signaland a disturbance
spectrum sensing. i whose probability distribution is only known within an “un-
certainty set,” which includes distributions whose firstments
are known, reflecting a common approach to partial stagistic
I. INTRODUCTION AND MOTIVATION OF THE modeling through moments. (This model can be viewed as a
WORK variation on the theme of the one proposed in [23], in which
. ) ) ) availability of side information on the minimum primarygsial
Spectrum sensing, one of the major functions of interweavg ength is also assumed. See also [21].) A way of descrthing

cognitive radio [4], detects and classifiggectrum holesi.e., : : . . .
. " philosophy underlying our approach is by observing theediff
regions of the spectrum space that can be opportunistiostlyl o\ co pepyeerecision making under riskvhich occurs when

by secondary users. The signal observed by the spectrumrsegsperfect statistical model of the observation is availabid

has the vector form decision making under ignorancerhich occurs when there is
y=ex+n (1) uncertainty on the model to be used.

wherex is the primary-user signah the noise, and takes  To choose the detector parameters under the assumed uncer-

on valuel if a primary signal is included in the observationtainty of the model (which does not allow the “natural” cheic

and0 otherwise. The vectors in (1) havé real components, of using forY” the likelihood ratio) we maximize a generalized

corresponding to discrete signal samples (in our contdkt, signal-to-noise ratio (SNR), calletflection Next, we examine

is also calledsensing timd. By indicating with the notation how this detector performs under several scenarios, acdsts

g ~ N(m, R) the fact that the random vectgrhas a Gaussian its robustness to the variation of the actual probabilistritiu-

probability density function with meam and covariance matrix tion of the unknown signal. The results described in thisepap

R, a standard assumption for (1)ris~ N(0,R,) (where the are related to the “robust decision design” problem (eXy] [

covarianceR,, is assumed to have full rank). and references therein), which we approach by assuming-a spe
A spectrum sensor decides between the two hypottéges Cific structure for the receiver and examining its robussrtes

e = 0andH; : ¢ = 1. Decision is made by comparing theProbability distributions differing from the Gaussian orle

statisticY’, a suitable function of the observed signal, againstfact, when the distribution of signal and/or noise is unknpw

thresholdd. The two probabilities of interest here are the falsdikelihood ratio cannot be used for optimum detection. i§tis

alarm and detection probabilities, whose definitions are the case, it seems a reasonable solution to assume a fixed form
for the detection statistic and optimize its performandee Ta-
Pra 2 P{Y > 0| 3}, (2) tionale behind this choice will be discussed in the follogvin
Po 2P{Y > 0| Hy). 3) Robustness is evaluated here by deriving sharp upper and

lower bounds to the performance of the detector as the pilebab

The choice of the statisti& depends on how much informa-ity dist.ribution pfi ranges through the gncerta_inty set. Amqng
tion aboutx andn is available to the detector, and on the toleiether information, robustness analysis provides the desig
able complexity of the calculations entailed in the decigico- with a tool yielding the conditions under which unsatistagt
cess. Two common choices Bt refer to situations in whickk Performance is due to model uncertainty rather than to redise

fects (other examples of this situation are examined, fieiifit
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of a Volterra expansion [3] and [16]: wherec is a constant (whose value is irrelevant to the detector
performance), and the superscfigtenotes transposition. The
“optimum” valuesw, andW, of the two relevant parameters
=@+ > wMy + 373wy, in (8), the vectomw and the matrixW, may be chosen as those

i i maximizing a generalized SNR known deflectiord

Y:S(ylvaa"'vyN>

F2DD iyt @ L s B[ 96) — B(y | 96 .
Y V(y [ Ho) ®)
) i _ ; i whereE denotes expectation, afiidenotes variance.

which maximize a suitable cost function, as @ieflectionto e golution to this problem is illustrated in [15] and, fhet
be described below. The use of a \olterra expansion tygicallomplex case, in [5]. It requires knowledge of the fourtbiesr
allows one to express the optimum statistic in terms of the M@atistics of the random variables involved, which we do not
ments of the random variablgs, - --, y . In particular, one may a55ume to be available far(more generally, one could use a
choose the order of the Volterra expansion (4) so that oy thncated version of a Volterra series including terms belyo
known moments ofy;, -, yy are involved. Now, it seldom gecong-order, which would need exact knowledge of higher-
occurs that many moments are available with sufficient acGyer moments for the optimization of its parameters [16].)
racy. Thus, areasonable approach to this situation of taio&f  \ye search instead for a solution assuming only knowledge of

would be toassumea given structure for the moments (typisecond-order statistics. This can be obtained by assuming a

cally, a Gaussian structure in which all moments can be co@z ssian distribution fox, or, more generally, a “Gaussian-

puted from first- and second-order moments), and evaluate Hﬂe" distribution, characterized by zero third-order memts
performance when the observed samples are actually not Gay 3 relation between second-order and fourth-order msmen
sian. This is the approach we take in the following, where f@gpica| of Gaussian distributions (see [15] for details.f-Re
simplicity we focus our attention on a second-order eXEaNSi grance [8] shows an example of a Gaussian-like, but non-

Coherent sensing is the most natural spectrum sensing teghy,ssjan, probability density function. Observe also keat
nique under the assumption that the primary sigrialperfectly g ny|| thrid-order moments uncouples the equations jield
known to the detector. The corresponding decision stliSts  {he optimum linear and quadratic parts, so that the optim@n L
built as a linear function of the observed vegtor detector is obtained by using independently calculateaapt

YL, =w/Rly. (5) linear and quadratic systems [15]). The resulting solutias a

. . . . closed form. Specifically, assuming that
Assume instead that no prior knowledgexak available. In P y g

One may choose the “Volterra coefficients!®, vV, etc.,

this case hypothesis testing becomes a composite probiem, a x ~ N(s,R;) (10)
a computable decision statistic can be obtained througbehe
eralized likelihood-ratio test (GLRT), viz., which corresponds to having= s+ i, with s a known deter-

ministic signal and a Gaussian disturbance, we have [15] and
Sy, x (Y | Hy, X) 9 [15]

Y = max — -7 [19]
GLRT = e~ fym, (Y | Ho) )
_ w, =R, s 11
— max fay —X) " B (11)
xeRN  fo(y) W, =R, "R;R}, (12)

with f denoting probability density functions. This leads to thﬁnd hence
guadratic test statistic

-1 ITp—1 -1
Yo = 'Ry, (6) Yiq =s'R,'Y+Y'R,'RR;y. (13)

In particular, when the primary signal structure is totally- Denoting by andO the null vector and the null matrix, respec-
known andn is white, one may use ag the measure of the tively, we can see from (11)—(13) that

energy contents of the observed signal, which yields (@) w, corresponds to the whitened matched filter.
Yo — IIVII2 2 (b) If i = 0 (corresponding to a deterministic primary signal),
Q=™ 7 thenR; = O, and hence the optimum statisticis linear.

The more general statistic we advocate here, where only p&} If s = 0 (corresponding to a zero-mean Gaussian primary
tial knowledge ofx is assumed, encompasses (5) and (7) as spe- signal), then the optimum statistic is quadratic, whichdse
cial cases, and consists of a LQ functibiy, of y. This may be the energy-detector statisti¢, whenn andi are white.
thought of as obtained by truncating to the second-order tiee

X X K ; . 2 “ i ” « ” ;
Volterra-series expansion of a generic nonlinear decikian- Also called “detection index” [6] or “output SNR” [11]. Theast sensible

optimization criterion would be to optimize the receivereagting characteris-

tional ofy.! It has the form tics, which appears to be a formidable task. The rationaténdethe choice of
T T the deflection as a cost function for the optimization of tig¢detector offering
YLQ =c+wWy+y Wy (8) both tractability and pratical utility is discussed in [{4ke also [1]). Other pos-

sible second-order cost functions related to deflectiorcategorized in [9] and
LGardner [8] discusses the concept sifucturally constrained receivers [19]. Baker [2] derives relations between the optimum défbeccriterion test
which are based on a combination of a simple ad hoc procedifineaw op- statistics and the log-likelihood ratio. In [1], the defleatis optimized for a
timization procedure, and yield the best performance faresclasses of prob- purely quadratic statistic, vizYg = y7'Wy, with results consistent with those
lems. presented here.
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(d) The “full” LQ statistic is optimum only ifs # 0 andR; # Po_pq=P [H(l +72)s+i+n|* > 9} (21)
O.
Defining the vecton £ R 'y, completing the square in (13), =Qny2 (\/Al, \/0/(c? + a%)) (22)
and removing an irrelevant additive constant, we may whiee t
LQ statistic in the new forrh whereQ. (-, -) denotes the generalized Marcum Q-function
2 1 < z? + a?
e = H%Ri s+ RIPR Yy 14y @m(@h) = o /b e < > > (o) do
(23)
. . L . 1,(-) is the modified Bessel function of the first kind and order
In the special case of white andi, viz., R, = o2i and () éné
R; = oZi with o7 > 0, the LQ statistic assumes the exceed- ,
ingly simple form a7 2
Ao = EIISH : (24a)
Yiq = [vs+yl? (15) 1 442)2
e OE P g2, (24b)
0; + On
where
V22 52952, (16) We compare the performance of the LQ detector to that of the
linear* detector, which has
This parameter quantifies in a way the amount of uncertainty 0
on the distribution of by comparing the variance of the noise Pea_, =P [sTn > 9} =Q <7> , (25)
against that of: Large values ofy? indicate small uncertainty, Vsl?on
and hence suggest the use of a coherent detector, while A smal )
~v* would naturally lead to the energy detector, as immediately p, , —p [s'(s+i+n)>6]=Q e C
reflected by the structure of (13). We may also observe the ex- lIsll?(c? + o2)

pression of the resulting maximum deflection, which yields
whereQ(-) denotes the Gaussian tail function.
17 Figs. 1 and 2 illustrate the improvement over the linear de-
Dimas = o2 02 o2 17) tector obtained by using a LQ statistic with a Gaussiamhe
( 1 ) X2 calculations leading to these figures assumed a primanalsign

_IXIP o X

1+ -— (18) s = 1, wherel denotes the all- N-vector. It is seen that the
22 - ; 2
improvement obtained depends on the valug®fA small 2,
and shows the two separate contributions of the linear afigfreésponding to arelatively high energy in the partiafipkn
quadratic part of the detector. cpmpon_ent, makes the StatIS.tIC (15) close Y@, which justi-
Since the derivation of (11) and (12) was made under the zg?—s’ the |rr21provement on the linear detector. Conversely,_gela_
sumption of Gaussian-like distribution fgrwhich might not be value ny ' corresponpllng toa sma]l amount of uncertainty n
valid in practice, the LQ-detector must be scrutinized t@mine modellngy,_ makes the improvementintroduced by the quadratic
its behavior with distributions differing from the one aswd. term marginal, as expected.
Thus, after examining its “optimum” behavior, we shalled A sample Complexity
to derive upper and lower bounds to its performance when the . ) ) )
distribution ofi ranges in an uncertainty set, as defined by the & now examine, following [20], how the sensing time

partial knowledge of the distribution itself. depends on the SNR and oA for a given performance level.
Assuming thatPrs and Pp can be given the form

2
On

06— A

Ill. PERFORMANCE OF LQ DETECTOR WITH Pra =@ < Nﬁ) ) (27)
GAUSSIAN-LIKE DISTRIBUTION 0_C

From now on, and purely for simplicity’s sake, we pursue P =Q (Wﬁ> (28)

our analysis referring only to the case corresponding tQ. (15 L )
The performance of the decision statistic is now evaluated Bd €liminating from (27) and (28), we obtain

computin 2
PEne N =(C~ 472 [VBQ™ (Pra) ~ VDQ ™ (Po)] . (29)
Pra—q =P [HVQSJr n||2 > 9} (19)  with the LQ detector, assume a Gaussiands = s1, SO
thatSNR £ s2/02. We observe that
= Qny2 (\/ Ao, VH/U%) ; 2 2 2.4
E|v*s+n||* = No;(7*SNR + 1), (30)
3With a notational abuse that should not lead to ambiguitiesgenote by the \% ||’}’2S + n||2 = NU;‘; (4’}’4SNR +2) (31)

same symbol two equivalent statistics, i.e., statistiadileg to the same detector
performance—for example, obtained by adding or multiglyby a constant  4A comparison with the quadratic detector would be unfaitgsiits use does
term. not assume any information on the primary signal structure.
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) ) i . ) _ Fig. 3. Sample size N vs. the SNR(£ s2/52) for the linear and LQ
Fig. 1. Receiver operating characteristics of linear (L) and LQ statistic detector with s = s1, two different values of 72, and Ppa = 1— Pp =
with Gaussiani, N = 10,s = 1, 02 = 1, and ¢ = 2.5 (and hence 0.01. ' '
42 =0.2).
1 / and hence
N =~
0.8 LO / 2
/ [(1+2y%)SNR + 1/2v%] [\/47231\11{ +2Q " (Pra-1q)
2
0.6 4 — VA1 +92)(1+1/292)SNR+2(1+1/491) Q~H(Pp-1q)| -
Pp / L (35)
0.4 It is observed that the first factor in the RHS of the above equa
tion is roughly constant for smaiNR, while varies aSNR. 2
0.2 for large values 06NR, while the second factor increases as
/ SNR. Thus, for very lowSNR the value of N remains about
constant wittSNR, while it decreases &R~ for largerSNR
0 (notice also that for relatively large values$XR the accuracy
0 02 04 P 0.6 0.8 1 of (35) is questionable, as the Gaussian approximatioririgad
A to it may not be valid).
Fig. 2. Receiver operating characteristics of linear (L) and LQ statistic The linear detector has
with with Gaussiani, N = 10, s = 1, ¢2 = 10, and ¢? = 2.5 (and
hence 42 = 2). A=0, (36a)
B = s%02, (36b)
and C =4, (36¢)
D = s*(0? + 02) (36d)

E|[(1+7)*s+i+n|?
= NoZ[(1++%)?SNR + 1+ 1/29?], (32) andhence

2
N = SNR™? Q7 (Pea-1) = VI+1/292Q (o)
VI[(1+7)*s+i+n]|? (37)
= Not[4(1 +9%)%(1 + 1/29%)SNR + 2(1 4+ 1/4~%)]. (33) SO tha2t, for a given target paiPra_1,, Po_r1, IV varies as
SNR™=.
Assuming thatV is large enough to justify a Gaussian approx- Fig. 3 shows the behavior @¥ as a function o5NR for the
imation for||y?s+ n||? and||(1 + v)?s+ i + n||?, we may ap- linear and LQ detector.

proximatePra_1,q andPp_1q in the form (27), (28), where )
B. Robustness of LQ Detector: A First Stab

_ A4
A=7"SNR +1, (34a) The analysis carried osuprawas assuming that, in addition
B = 4+4*SNR + 2, (34b) toi being a Gaussian vector, the varian¢eof its components
C=(1+~2)2SNR + 1+ 1/2+2 (34c) \were known, so that the value of parametrizing the detector

- ) A was computed using the exact valuesrpfands?. A more re-
D=4(1+77)7(1+1/297)SNR+2(1 +1/477)  (34d) gjistic assumption is that the value of is only approximately
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Fig. 4. Probability of misdetection Pyip_1. for a LQ detector withs = 1, Pra

N =20,02 =1,and 62 = 1/N for different actual values of 2. The ) ) ) o ] o
value of the threshold 6 is chosen so that Pyp_1.q = Pra_1q = Fig. 5. Receiver operating characteristics of linear (L) and LQ statistic
0.016. with Gaussian (LQ(G)) and uniformly distributed i [LQ(U)—obtained

by computer simulation]. Here N =10, s = 1,02 = 1,ando? = 2.5
(and hence v2 = 0.2).
known through its estimai&?, so that the detector using an es-
timated value ofy? is likely to be mismatched. We now ex- ) .
amine this situation by evaluating the effect &_rq of a bility of false alarm does not depend grwe may write
mismatchedr? (the value of Pra_rq Will not be affected by _
the mismatch. For convenience, here we use the probability o Pp =E(Pp(i) (38)
misdetectionPyip_1.q = 1 — Pp_1q)- For a fair analysis, we
consider that addinigto sincreases its power, so that the probavhere | denotes the actual distributionipE; expectation with
bility of misdetection would be improved by a larger uncirt  reéspect to |, and™ (i) the detection probability conditioned on
termo? unless the observed signal power is kept constant. Thisl he extent of variation of’, as | runs in the uncertainty set
is done by replacing folfs||? in (24a) and (24b), under the asells us how robust the detector is.
sumptions = si, the termN||s? — 02||2, whereo? is the actual
value of the variance of the components ofvhich may differ A. Moment Bounds
from the values? estimated and used to determing Fig. 4
illustrates the effect of such mismatch. In this figuse= 1,
N = 20,02 =1,ands? = 1/N, so thaty? = 10.

Our study of the LQ detector robustness consists of finding
sharp upper and lower bounds to (38) as | runs through all the
possible distributions off satisfying the set of constraints im-
posed by the physical aspects of the problem. Some of these
IV. INACCURATE MODEL OF |: DETECTOR constraints take the form of generalized moments(@k., ex-

ROBUSTNESS pected values of known functionsipf while others may involve
what is known about the structure of the distribution of Ir-Fo

The structure ofYrq was chosen in Section Il under amally the problem to be solved is

Gaussian-like assumption enand a given value of?. Now,
if the assumption on the statistics»ois not valid, the LQ detec-
tor is mismatched, and hence its performance may be degraded
One may examine this performance with a number of different
models forx: for example, Fig. 5 shows the receiver operatinglong with its equivalent version witinf in lieu of sup. Here,
characteristics with uniformly distributéd We observe that in Z is the subset of all possible probability distributionssfging

this situation the performance of the LQ detector is notdegd the given constraints.

by the mismatch (actually, it is even improved, reflectirgftct A simple, yet important special situation occurs whies the

that maximization of the deflection does not necessarilylympunconstrained set of all possible distributions with fisit@port.
optimization of Pp, and Pgy ). In this case, if few generalized momentd afre exactly known,

A more accurate scrutiny of the implications of the mod@&r even known within a certain interval, geometric moment-
mismatch leads to the evaluation of the robustness of the bQund theory (e.g., [7], [12], [13], [25], and referencesr#in)
statistics to signal-model variations. To do this, whild sic-  allows one to obtain sharp upper and lower bounds to the salue
cepting thatx = s+ i, with s a known signal, we assume thabf Pp. Here we assume the knowledge of range and variance
a limited knowledge of the distribution ofis available, for ex- of i. The geometric moment-bound theory relevant here is sum-
ample in the form of its range and variance (we also assunte thrarized by the following fact. Le¥ denote a random variable
it has mean zero), and study how the detector performs as tih range in the finite interval, and unknown cumulative dis-
distribution varies in the uncertainty set defined by those-c tribution function (CDF). Let; (z) andk»(z) be two continuous
straints. Under these conditions, after observing thaptbba- functions defined ovek. Themoment spacef Z, denoted\,

sup EIPD(i), s.t. Ep k(l) = U
s
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is defined as the (closed, bounded, and convex) set of the pair 1 \

kszz,/k szz> (39) 0.9

(A1<><> [ ha()d6() AN
asG(-) runs over all CDFs defined ovér. The main result 08 \\
we need is the following [12], [25]M is the convex hull of 1) '
the curveC = {(k1(2),k2(2)) | z € 2} in R2. Explicitly, by -
choosingk; (z) = 2% andkz(z) = f(z), the expected value of 0.7 \\
f(Z) can be identified with the second coordinaté\of If the
first coordinate is chosen as the known valug &f?, then upper 06 \
and lower bounds t& f(X) are obtained by direct evaluation ’ \k
of the upper and lower envelopesJf.
0.5

B. Robustness of Linear Detector 0 50 100 150

72

Consider the linear detector first. We have
Fig. 6. Moment space of Pp_r,, N = 10,s = 1, 02 = 1, 02 = 4, and

Pp (i) = }P[sTn >0 — ||5H2 — STI] (40) a = 4. The curve Pp_1, and the boundaries of its convex hull are
shown.
6 —[|9* — p(i
Q( n|250> 1)
Visiian Thus, the upper and lower bounds B5_1.q ato? € (0,a?)

are given by the values of the upper and lower extremes of the

wherep(i) £ s'iis a random variable with rang@ i, fimax ) convex hull of the curve

mean zero, and variands||?o?. Assuming agais = 1 and the
i ] i 2 2
components dfconfinedin(—a, a) (sothat? € (0,a%)), anda ¢ & (z, Qny2 (\/Z, \/m) |z € ()‘mim)‘maX)) (48)
symmetric probability density function fodi), the curve whose
nvex hull yiel har r and lower n [ . . .
convex hull yields sharp upper and lower bound#ta .. is corresponding to the abscisBA\(i)] = N[(1++2)% +0?]/02.
Cp_1 & (22, f(2) | 2% € (0,Na? 42
Pt ( @) ( >) (42) D. Comparisons
Fig. 6 shows the moment space of the detection probability
with linear statistic. Increasing the sample si¥e besides in-

(43) creasingPp_1, yields a narrower moment space. This observa-
tion may be used to determine the sample size, whose choice
influences the performance of the spectrum sensor as wedl as i

_ _ robustness. Robustness analysis provides a tool to detide w

Consider next the LQ detector. From (21) we obtain unacceptable detector performance is caused by low SNR, or

o 9 9 | rather by an insufficiently accurate model of system pararset
Po-1q(i) = Pl[ul® > 0/, |i] (44) Figs. 7 and 8 show two moment spaces of the detection prob-
ability with LQ statistic. As for the linear case, increasitihe
sample sizeN, besides increasing the detection probability,
yields a narrower moment space. Comparing the moment spaces

ICEE l@ <9_7 %‘j) +Q (9_7 %T)

C. Robustness of LQ Detector

whereu £ ¢2||(1 ++2?)s+i + n||?/o2 has, conditionally o,
a noncentrak? distribution with noncentrality parameter

A(i) = LH(I +A2)s 42 (45) of Iinear_ and LQ detector, one may (_)bserve that,_as discussed
o2 ' above, increasing the power of the interference incredses t
probability of detection of the LQ detector, while decreages
Consequently, one of the linear detector.
Po_1q(i) = Qny2(V (), \/0/02). (46) E. A Generalization
The random variable\(i) has, under the the assumption that We observe here that, while the bounds achievedshaep
has mean zero, a known mean value i.e., they correspond to distributions that are achievablger
1 the constraints assigned and hence cannot be furtherrigghte
EA(i)] = = [(1+%)?|Is]|* + No7]. (47) the choice of a wide séf might provide loose, and hence pes-
Tn simistic, bounds. For example, in the cases examined abeve t

The range ofA(i) (which we assume to be finite) is denote§Xtremal distributions turn out to be discrete, which may no
(Amins Amax). FOT example, ifs = 1 and the components of be a realistic model. Thus, one may want to rule out distri-
mins 7\max /- 1 -

take values if{—a, +a), with a > 1 + 2, we have from (45) _butions being ill-fitted to the specific problem and hence m_ak
ing the moment bounds unreasonably loose. For computéhtiona

purposes, it is convenient to restrict the underlying dhation

_ _ N 2 2
Amin =0, Amax = —5 (1497 +a)”. to belong to aconvexZ [18], [22]. This is because a number

n
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Fig. 7. Moment space of Pp_r,q, N =8,s = 1,02 =1, 02 = 4, and 5
a = 1.125. The curve Pp_r,q and the boundaries of its convex hull (8]
are shown.
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Fig. 8. Same as in Fig. 7, but with N = 12. [16]
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