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Classification and Characterization of Encoded
Traffic in SCADA Network using Hybrid Deep
Learning Scheme

Love Allen Chijioke Ahakonye, Gabriel Chukwunonso Amaizu, Cosmas Ifeanyi Nwakanma, Jae Min Lee, and
Dong-Seong Kim

Abstract—The domain name system (DNS) has evolved into
an essential component of network communications, as well as
a critical component of critical industrial systems (CIS) and
Supervisory Control and Data Acquisition (SCADA) network
connection. DNS over HTTPS (DoH) encapsulating DNS within
hypertext transfer protocol secure (HTTPS) does not eliminate
network access exploitation. This paper proposes a hybrid deep
learning model for the early classification of encoded network
traffic into one of the two classes: DoH and NonDoH. They
can be malicious, benign, or zero-day attacks. The proposed
scheme incorporates the swiftness of the convolutional neural
network (CNN) in extracting useful information and the ease
of long short-term memory (LSTM) in learning long-term de-
pendencies. The simulation results showed that the proposed
approach accurately classifies the encoded network traffic as DoH
or NonDoH and characterizes the traffic as benign, zero-day, or
malicious. The proposed robust hybrid deep learning model had
high accuracy and precision of 99.28%, recall of 99.75%, and
AUC of 0.9975 at a minimal training and testing time of 745s
and 0.000324 s, respectively. In addition to outperforming other
compared contemporary algorithms and existing techniques, the
proposed technique significantly detects all attack types. This
study also investigated the impact of the SMOTE technique as
a tool for data balancing. To further validate the reliability of
the proposed scheme, an industrial control system SCADA (ICS-
SCADA) dataset, in addition to two (2) other cyber-security
datasets (NSL-KDD and CICDS2017), were evaluated. Mathews
correlation coefficient (MCC) was employed to validate the model
performance, confirming the applicability of the proposed model
in a critical industrial system such as SCADA.

Index Terms—CIS, DNS, encoded network traffic, hybrid deep
learning, IIoT, IoT, network intrusion, SCADA security
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model.

ITIoT flow diagram with the proposed SCADA network hybrid DL

HE conventional information security approaches usu-

ally do not offer comprehensive protection to critical
industrial systems like supervisory control and data acquisi-
tion (SCADA). It is due to the prevailing exploitation mech-
anisms, approaches, and the constant emergence of new at-
tacks. Researchers and security professionals constantly study
various intrusion detection techniques with neglect of systems
and situations under intrusion [1]-[4]. Hence, only information
security is insufficient in addressing overall security issues
in critical systems such as the SCADA network. There is a
need to consider network communication, and traffic proto-
cols [5]-[9].

The SCADA network presents surveillance of disseminated
industrial facilities, control, and procedures for real-time in-
formation production in the industrial Internet of things (IIoT).
CIS smart factory employs SCADA systems to automate
industrial processes such as manufacturing and power gen-
eration for real-time service delivery [10], [11]. Regardless
of the significance, the SCADA network is not adequately
secured and hence vulnerable to a series of attacks that can
be detrimental to time-critical operations [12]. The point of
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TABLE I

TABLE OF ABBREVIATIONS.
Abbreviation Meaning
AUC Area under curve
B_Norm Batch normalization
B5G Beyond 5G
CIS Critical industrial systems
CNN Convolutional neural networks
DDoS Distributed denial of service
DL Deep learning
DoH DNS over HTTPS
DoS Denial of service
DNS Domain name service
ECN Ethernet consist network
FTP File transfer protocol
HMI Human machine interface
HTTPS Hypertext transfer protocol secured
IETF Internet Engineering Task Force
IDS Intrusion detection system
ICS Industrial control system
IIoT Industrial Internet of things
IoT Internet of things
1P Internet protocol
LSTM Long short-term memory
MiTM Man in the middle
ML Machine learning
NIDS Network intrusion detection system
NIST National Institute of Standards and Technology
PCC Pearson’s correlation coefficient
PLCs Programmable logic units
ReLU Rectified linear unit
RFE Recursive feature elimination
R2L Remote to local
RTUs Remote terminal units
SCADA Supervisory control and data acquisition
SSH Secure shell
U2R User to remote
XGBoost Extreme gradient boosting

these attacks is predominantly devices and connections such
as network communication and transmission protocols, appli-
cation servers, sensors, and actuators. Securing the SCADA
network transmission requires protecting the communication
and transmission protocols, hence the need for further protec-
tion of the domain name service (DNS). Despite the soaring
intricacy of SCADA systems and their increased susceptibility
to the internet, the security of the network and communication
protocols may not apply a structured approach. Due to prevail-
ing security threats, bypass of security measures, data egress,
and incompatibility issues. Therefore, an in-depth hybrid deep
learning protection based on a real-time apprehensive approach
is necessary for securing the SCADA network communication
system [12]. Fig. 1 represents a typical network flow of the
IIoT showing the placement of the proposed hybrid model.
The rise of the beyond 5G (B5G) and IoT has prepared
the way for more device connectivity, thus enhancing the uti-
lization of internet and network communication protocols [2],
[7] and increasing its susceptibility to vulnerability and attacks.
The security of these interconnections is consequently critical,
particularly in the context of the SCADA network. The DNS,
which works like a phonebook for users, has been a major
facilitator in Internet communication. With the sole function of
translating domain names to Internet protocol (IP) addresses.
There may be some floating questions about the preparedness

of DNS for B5G and IIoT. Nevertheless, there is a certainty
that DNS is essential [13]-[20].

DNS encoding involves enclosing data transmission be-
tween the server and a client using the DNS protocol [21].
The data is inside a standard DNS query, and the server may
or may not give some encrypted data in the DNS feedback
conversation. DNS encoding in SCADA network communi-
cation is due to difficulty in detection and prevention due
to recursive hops traversed by data packets before the name
server destination. Firewalls also fail to inspect the frequency
and substance of DNS packets accurately. As a result, the
SCADA network is vulnerable. The goal is to protect the
communication protocol from cases of DNS data manipulation
and hijacking, eavesdropping, and increasing the security of
the communications in transit. However, the focus on the
DoH is from the point of protecting only communications
in transit to reduce vulnerability to attacks like man-in-the-
middle (MiTM).

With the introduction of IP version 6 (IPv6), it is now possi-
ble to address a whole range of devices, something that was not
possible with the almost exhausted IP version 4 (IPv4) [22].
Although the DNS function may seem unnoticeable, a failure
in the network can hamper users’ accessibility to SCADA
resources via the internet [23]. DNS failures often result from
attacks by an adversary, a trend that keeps increasing by the
day [24]-[27]. This situation necessitates an efficient hybrid
deep learning-based protection mechanism to keep up with the
evolving attack trends. The National Institute of Standards and
Technology (NIST) published a document outlining rules for
safely deploying DNS to avoid the security risks associated
with it [28]. The Internet Engineering Task Force (IETF)
introduced the DNS over hypertext transfer protocol secured
to improve DNS security (DoH). This new protocol helped
to improve DNS security and privacy. However, this scheme
is insufficient to mitigate against advancing vulnerability and
attacks in critical systems like the SCADA network.

Attempts at SCADA network security protection have im-
plemented firewalls and network intrusion detection systems;
to subsist the challenges of attacks and vulnerabilities. A
limited number of these studies focused on communication
protocols, notably DNS. This study focuses on DNS protocols
owing to their applicability in network traffic communications
using HTTP/HTTPS. It is understandable as myriads of the
network traffic communications generated by SCADA intru-
sions use DNS [25], [29]. To mitigate against various DNS
attacks, a real-time, proactive method; capable of intelligently
detecting and classifying the characteristics of SCADA net-
work communication traffic is crucial. Given the time-critical
operations of the SCADA system, reliability, low computation
cost, and significant detection accuracy determine the perfor-
mance of an efficient intrusion detection technique. The lack of
a comprehensive technique that meets these demands remained
an issue.

Hence, an intelligent hybrid deep learning technique for
the swift detection and characterization of SCADA network
traffic. Following the degradation of model performance with
an increase in the feature-dimensionality [30], the novelty of
the proposed model is proffering low computational cost and
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enhanced detection accuracy by the employed capability of
independent feature engineering technique. This model can
be applied in any system with vulnerability issues, making
it a good fit for real-time systems such as SCADA. Thereby
mitigation against obfuscation by evading established IPs and
ports. Labeling the input as the attack in the testing stage is
not required in the presented scheme. Hence this study aimed
to develop a model that intelligently predicts the character
of the transit network traffic (if incoming traffic is non-
DOH, benign-DoH, or malicious DoH). So, it can characterize
transit communication traffic and eliminate the non-DoH and
malicious DoH traffic, allowing only the benign DoH traffic
and thereby improving the system’s security.

This study uses an intelligent hybrid deep neural network
to detect and characterize SCADA network communication
traffic accurately. Furthermore, such an efficient ML scheme
should include alternative metrics, such as the Mathews
correlation coefficient (MCC) [31], for testing the proposed
approach’s reliability in real-world scenarios with unbalanced
data. The main contributions of this paper are as below:

o To achieve efficient, real-time detection/classification, this
research proposes an intelligent, time-efficient hybrid
scheme that improves network security. The proposed
classification model of the IDS in SCADA network
communication emulates real-time traffic monitoring.

o This research illustrates the effect of the combination of
convolutional neural network (CNN) and long short-term
memory (LSTM) to learn long-term dependencies and the
significant improvement of the classification.

o This study demonstrates the improvement of the swift-
ness, stability, and robustness of CNN by imploring batch
normalization.

o The study also highlights the benefit of implementing
dropout layers to tackle the issue of overfitting, which
predominantly affects deep learning models.

o Also is the comparison of the performance of other mod-
els and the proposed architecture for precision, through-
put, computational time, recall, and Fl-score.

o The Mathews correlation coefficient validated the pro-
posed models’ reliability, in addition to the evaluation of
the industrial control systems (ICS-SCADA) dataset.

The next Section II introduces the related studies on cur-
rent and trending approaches for intrusion detection, while
Section III thoroughly discusses the system methodology of
the proposed deep hybrid neural network. In Section IV, the
performance evaluation is presented and lastly, the conclusion
is summarized in Section V. Table I is a list of major
abbreviations used in this work.

II. THEORETICAL BACKGROUND AND RELATED WORKS
A. What is SCADA

SCADA systems are industrial automation networks that use
software and hardware to acquire, analyze, and provide more
precise data generated from sensors to control and monitor
industrial operations [32]. These technologies are critical for
the industrial environment to comprehend and achieve their
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processes for data-driven decisions to optimize operations.
The software and hardware of a SCADA system components
communicate in synchrony [32]. SCADA software analyzes
and interprets hardware data configured for management and
anomaly detection. The hardware consists of relays, sensors,
and switches, with the principal role of acquiring critical
operating data. This data goes to the programmable logic
controllers (PLCs) or remote terminal units (RTUs), which
convert it into an industry-standard protocol that can be
processed and used for operational efficiencies [32]. The data
is then transferred to the human machine interfaces (HMIs) for
renderings of the processes via indicators, statistical reports,
spreadsheets, alert signals, and patterns, analyzed for informed
data-driven decisions. Before the widespread adoption of au-
tomation technology in the smart factory, industrial processes
were controlled and managed manually. Organizations must
control and monitor equipment and operations on a much
larger scale and across longer distances as factories and pro-
cesses get more extensive and more complex. The introduction
of PLCs and RTUs in the industrial sector paved the way for
developing SCADA systems.

Some basic features of the SCADA system are as follows:

1) Acquisition of High-Performance Data: A SCADA sys-
tem should be capable of mission-critical swift data
gathering via a database capable of logging data at high
speed.

2) Functionality: A sound SCADA system provides a
robust framework for process automation, triggering
operations to complete actions and engaging users in
predefined procedures.

3) Ubiquitous Connectivity: A high-quality SCADA sys-
tem with ubiquitous connectivity allows any data in
the system for connectivity to and from any location,
enabling IoT-ready operations. It should support some
actual implementations of message queuing telemetry
transport (MQTT), simple network management proto-
col (SNMP), Internet of things (IoT), databases, and web
services, that allow the aggregation of any data using
communication techniques.

B. Characteristics and Attack Patterns of a SCADA Network

SCADA networks become more stable over time, as net-
work applications do not join or leave regularly. Conventional
networks often offer a wide range of protocols, such as
HTTP, instant messaging, and voice over IP, whereas SCADA
networks provide services like monitoring and controlling
industrial processes and automation. Primarily, due to the
polling mechanism utilized to collect data, most SCADA
traffic is projected to be generated regularly. As a result,
traffic patterns are not reliant on human activity, as is the
case in traditional IoT networks [33]. Extensive research into
traditional networks revealed that SCADA networks are very
different from regular networks [33], [34]. The IEC-60870-5-
104 (IEC-104) protocol is widely used in SCADA networks
to manage sensitive facilities like power plants [34]. As the
SCADA security significance grows, researchers are studying
the characterization and modeling of SCADA traffic to develop
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Fig. 2. Schematic representation of system model.

defense mechanisms based on the regularity of the polling
mechanism used in SCADA systems, particularly the charac-
terization of traffic caused by non-polling mechanisms such
as spontaneous events. Authors [34] proposed a method based
on the probabilistic suffix tree (PST) to find the underlying
temporal patterns of spontaneous events, providing an insight
into how the traffic flows between SCADA components varies
over time. Providing evidence of the existence of patterns
in data distinct from standard conventional network traffic
patterns.

C. Related Works

A Series of research on intrusion detection with machine
and deep learning (ML/DL) techniques with an emphasis on
IoT; is limited to the emerging SCADA and smart factories.
However, this study with insight into SCADA network intru-
sion detection utilizing ML and DL is required to ascertain
the extent of work in the target domain. Ensemble learning
approaches combine many classifiers to generate predictions
that increase performance for attacks and protocols in IoT
networks. Although this method produced improved outcomes,
the approach is rather cumbersome due to a lack of processing
speed [35]-[37].

Research has to detect malicious DNS activity in the
DoH environment utilizing HTTP traffic [38]-[41]. These
ML attempts investigated various mechanisms for anomaly
detection/classification of DNS over HTTPS. However, it is
brief with a lack of detailed scrutiny of robust approaches for a
high-dimensional dataset. Similarly, [29] described a two-level
strategy of using classifiers to recognize and categorize DNS
over hypertext traffic. According to the authors, the study’s key
feature is its capacity to detect and classify DoH traffic with a
limited amount of input data. As a result, the model is unsuited
for Smart manufacturing activities due to its lack of robustness.
In another study, [42] presented a hybridization strategy with
a universal optimization methodology for detecting distributed
denial of service (DDoS) attacks in IoT. A prototype version of
the CICIDS2017 dataset investigated this method. The authors
plan to test the model on distributed IDS because, while
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efficient, it lacked computational speed and was not robust
enough for a smart factory.

The deep learning framework of CNN and LSTM networks
or other combinations has significantly impacted computer
vision as well as the intrusion detection [42]-[47]. It can
comprehend the concept of high dimensionality, as well as
execute feature extraction, classification, and data integration
in heterogeneous IIoT datasets. Two fundamental aspects are
hierarchical feature representations and a long-term under-
standing of dependencies in large-scale sequence data.

There have been attempts at the design of SCADA IDS.
The paper by [43] evaluated the popular NSL-KDD dataset
and offered a strategy for identifying attacks using LSTM and
CNN. Despite the model’s good performance, the categoriza-
tion speed could be faster. [48] in a study presented the devel-
opment of a SCADA system testbed to analyze the effects of
attacks. Their approach investigated the KNN, random forest,
naive Bayes, and decision tree classifiers. Another of their
papers [49] conducted a flow-based intrusion detection study
for a SCADA system using deep artificial neural networks. The
proposed approach assessed both online and offline attacks.
The strategy performed admirably but needs to evaluate more
number of attacks.

[50] developed a technique for IDS in power grids that
combines recursive feature elimination — extreme gradient
boosting (RFEXGBoost) centered on feature selection with a
majority-vote ensemble approach. When evaluated on publicly
available datasets collected on a modest power grid testbed,
achieved considerable detection rate, accuracy, recall, and
precision. A technique for IDS based on a few-shot learning
approach for attack detection in a SCADA network by [51]
showed ambitious performance with few examples in iden-
tifying attacks. However, these current studies lacked time
efficiency, which is vital in Smart factory operations.

As a result, this work provides a hybrid approach with
time efficiency to harness the influence of cyber-security
vulnerability and attack detection. The approach models an
intelligent detection and characterization of the network traffic
in a SCADA system.

While there have been studies into detecting and categoriz-
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ing fraudulent DNS via HTTPS traffic, the problem here is
that the research in the Al domain is not yet mature enough.
Furthermore, there appear to be a small number of studies
that utilize the entire dataset or provide some observations
of the dataset used, and network parameters with readability,
and are beneficial to the research community. Furthermore,
Al techniques for detecting and classifying DNS over HTTP
traffic assaults should have high accuracy and precision, recall,
the area under the curve (AUC), minimal processing time,
and reliability. In summary, unlike most others, this research
uses the concept of combining two separate neural networks to
solve the mentioned challenge of encapsulated DNS attacks.

Recently, various studies on DL approaches widely ac-
knowledged for their resilience and ability to learn and
predict important attributes from network traffic to resolve
attacks on intrusion detection demonstrated improved perfor-
mance [42]-[47]. However, these studies seem limited due
to the focus of some models on attack classification while
others performed detection. It is also that these models lack
comprehensive intrusion detection of varying attack types
and zero-day attacks. The main argument of this study is to
address the salient requirement for security in IIoT, particularly
SCADA networks, by using more precise techniques to attack
detection and categorization of all attack types, including zero-
day attacks. The proposed approach, in addition to enhanced
model performance, seeks to reduce computational time effec-
tively.

D. Summary Research Gaps from Related Works

Table IIsummarizes related works based on the identified
limitation of existing studies leveraging the large, imbalanced,
and high-dimensional CIRA-CIC-DoHBrw-2020 dataset. This
table shows that most published works are difficult to repro-
duce due to insufficient details and transparent methodologies.
In this work, a careful effort to ensure the reproducibility of
the results is critical to growing the yet to be matured use of Al
for SCADA vulnerability research. Also, Table III summarizes
related works based on the combination of CNN and LSTM,
highlighting the limitations of existing studies. Two limitations
are evident. First is the limited SCADA datasets available
such that most authors resorted to using available datasets
such as NSL-KDD or KDD99. Secondly, in the case of the
SCADA datasets, most authors’ performance evaluation is
limited to one or two datasets. In this work, we have adopted
the use of repeated evaluation and MCC metrics to show the
reliability of our proposed scheme to provide good accuracy
at least computation time on four publicly available datasets.
In addition, we have ensured the model is reproducible by
adopting the principle of explainable Al

ITIT. METHODOLOGY
A. Description of the Power System SCADA Network

SCADA networks enable an ideal method for remote control
and monitoring industrial resources. It is extensive in vari-
ous industrial applications such as factory automation, water
treatment, oil gas pipeline control, monitoring, power systems,

TABLE II
SUMMARY OF RELATED WORKS BASED ON ENCODED
CIRA-CIC-DOHBRW-2020 TRAFFIC DATASET (YES: 1/, NO: x).
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Provided
Used all | details of | Ease of re-
Study dataset the neural | sults repro-
samples network ducbility
features
Detecting  malicious .
DNS [38] X X X
Machine learning for
DNS tunneling [39] X X X
Attack classification
[40] X v X
DoH traffic classifica-
tion [41] X 4 X
Detection of DoH
tunnels [21] 4 X 4
Proposed
scheme (DNS traffic
classification/attack v v v
detection)
Dataset CIRA-CIC-DoHBrw-2020
TABLE III

SUMMARY OF RELATED WORKS BASED ON CNN-LSTM APPROACH (YES:
v/» NO: x, N/A: NOT AVAILABLE).

Improved Low com-
Author | Year | Dataset detection putational
accuracy cost
[42] 2020 | CICIDS2017 | +/ X
Vg
Transformed
[43] 2020 | NSL-KDD Vv standardized
data into
image form
[44] 2020 | KDD99 IV N/A
[45] 2020 | CICIDS2017 | +/ N/A
Ve In | : In
CIRA-CIC- classifying classifying
DoHBrw- and char- | and char-
Proposed 2022 2020, ICS- | acterization acterization
scheme SCADA, of all attack | of all attack
NSL-KDD, types across | types across
CICIDS2017 | all evaluated | all evaluated
datasets datasets

and increased efficiency. It collects data from various pro-
duction units and processes it accordingly. The programmable
logic controllers in remote locations continuously monitor the
unit components and relay that information to the central
system. It increases efficiency by maintaining a manageable
range of operational factors [53]. Fig. 3 is the power system
SCADA network configuration diagram used to generate the
dataset [52]. It comprises various parts, the first of which
are power generators G1 and G2. R1 to R4 are intelligent
electronic devices (IEDs) that control the breakers (on or off).
The breakers are BR1 to BR4. In addition, are two lines, line
one connects breaker one (BR1) to breaker two (BR2), and line
two connects breaker three (BR3) to breaker four (BR4). Each
IED is programmed to control one breaker. R1 controls BRI,
and R2 controls BR2, respectively. Since they lack internal val-
idation, IEDs use a distance protection technique that trips the
breaker on detecting anomalies regardless of whether they are
valid or contrived. The components and configuration of the
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Control Panel

OpenPDC

Control Room

Fig. 3. Configuration of the power system scada network used to generate
the SCADA dataset [52].

power system SCADA network define its uniqueness in terms
of data generated, susceptibility, and attack methods [33],
[34]. Therefore the features of the SCADA traffic pattern and
characteristics contrast the ordinary internet traffic. Hence, it
requires a robust approach for classifying and characterizing
its encoded traffic. As a result, a practical, time-exigent IDS
is necessary. The data includes twenty-nine (29) types of
measurements from different phasor measurements (PMU). A
phasor measurement unit (PMU) is a device that measures
electrical waves on a power grid while synchronizing with an
expected time source. This network comprises four PMUs that
each measure 29 features for a total of 116 PMU measurement
columns in the dataset. Each column’s index is in the form
“R#-Signal Reference,” indicating the type of measurement
from a PMU designated by “R#” The dataset contains 128
features. For more details of features, see the dataset descrip-
tion.

B. Attack Traffic and Types

The constant increase in the number of attack scenarios,
combined with new and more complicated network and soft-
ware configurations, necessitates the inclusion of real-time
network traffic in data sets. This phenomenon has also led
to the non-existence of a perfect network-based dataset [54].
To fully evaluate IDS approaches, more than one dataset is
essential to avoid over-fitting to a specific dataset, limit the
influence of false artifacts in a specific dataset, and analyze
their techniques in a more global definition. IDS datasets
contain a variety of attack scenarios. This attribute identifies
the presence of zero-day, benign, and malicious network traffic
in a dataset and returns true if the dataset includes any of the
attributes. Additional information describing the specific attack
types and their criteria are below:

1) Zero-day Traffic: This focuses on a zero-day vulnerabil-

ity. A zero-day vulnerability is an identified attack yet
to be addressed in the network traffic.

2) Benign Traffic: This is typical network traffic devoid of
any form of intrusion or attack.

3) Malicious Traffic: In this scenario, intruders exploit the
network traffic and bombard the target system with
various attack types such as denial of service (DoS)
and, DDos, MiTM, infiltration. It takes advantage of the
functionality of the system’s vulnerability to overwhelm
the target.

C. System Methodology

To address the problems discussed in Section II, this work
proposed the use of an intelligent CNN-LSTM for a time-
efficient vulnerability and attack detection in a smart factory
SCADA network. See Fig. 2 for system model architecture.

1) LSTM: LSTM is known for the capability of training
long-term reliance on data. The main feature of using LSTM
is the elimination of feature engineering [55]. LSTM network
comprises collective units; these are three main elements, input
port, forget port, and output port. They guide the upgrade,
improvement, and excision of data enclosed in the unit. For
generating the current state, the input gate uses a sigmoid
function to govern the input data [56].

it = [wy. (fio1, f)F + bil, (1)

where b; and w; denote offset and the weight matrix of the
input gate. Furthermore, the input gate uses the tanh function
to build a data vector for the current state. The proposed
network determines the hidden state ¢; as thus: the use of
the outcome of both the input and forget gates, the proposed
network determines the hidden state ¢; as:

¢ = tanhlwe. (fo—1, f1)* + bel, 2)

¢t = ft X ci—1 +ig X & 3)

The forget gate then uses a sigmoid gate ¢ to delete
unnecessary data from the input layer output f; and preceding
cell output f;_;. Finally, multiply the data to combine it. The
forget gate’s output f; looks like this:

fo=slwp. (fior, f) 4 byl ©))

where by and wy are offsetting the forget gate and weight
matrix.

Lastly, the output gate selects useful characteristics based
on the current cell state, the primary cell’s result, and the new
data. This output gate function, o, is denoted thus:

Ot zg[ww(ft—laft)R_"bo]- )

The resultant LSTM layer: f,utcome is denoted by:

foutcome = 0y X tanh (Ct) . (6)

2) CNN: CNN is an extensively utilized neural network
with applications presently mainly in computer vision for
image recognition, capable of efficiently extracting useful
batches of data in a large sample. For this study, see CNN
as expanded in Section III-D.
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D. The Hybrid Framework

This section presents the proposed hybridization of the
CNN-LSTM model; that opposes the computational time and
accuracy of existing intrusion detection in IloT (SCADA).
Despite a series of researches demonstrating that the growth of
growing network size and execution time results in an excel-
lent rapid performance. The execution time and limitation in
variable quantity are also essential concerns in IIoT (SCADA)
IDS. Therefore, to resolve the determined limitations, this
study considers multi-variate convolution, passing over inter-
connectivity to employ optimal parametric pooling and attain
competent learning performance at a minimal execution time.
Fig. 4 illustrates that the suggested approach is built with a
standard convolution layer to generate completely detached
variables and an LSTM layer for SCADA network traffic
classification and characterization.

The input layer is the pre-processed min-max data normal-
ization of the size Q € XPacksizex 14x1 Apt to enhance the
convergency of the input dataset is the batch normalization
layer to guard against the overfitting of the model. The input
data in this study normalized into tiers for each of the 30 mini-
pack sizes. The procedure for this standard setting is in two
phases: Normalization, resizing, and equaling. This procedure
maintains the model learning process, impressively lowering
the number of iterations needed for training deep learning. The
batch-normalized data goes through (1x3) convolution layers
with 12 kernels. In the convolutional layer, the 1D convolution
operation of the kernel and input map is the sum of the dot
product at a specific spatial coordinate (x,y) as follows:

Conv, , = ijyj, @)
7

where z; indicates the convolution kernel weight and y; refers

to the network traffic worth of the input dataset. The scalar

bias input g controlled the convolution outcome and reckoned

an established cost.

®)

The output feature P is XPpacksizexI4xl6 “The value 16 is the
number of employed mechanisms.

The feature map is from a non-linear activation function
h as the convolutional layer outcome. The rectified linear
unit (ReLU) activation function is employed to minimize
concerns of over-fitting. The ReLU generates a zero value for
any value less than zero and forwards the value more than or
equals zero. The process of the ReL.U is as follows:

P ifP>0,
h(P)—{o if P < 0.

Three different stream interconnectivity strategies are to
compute the ReLU layer feature map result. The integration
layer combines the processing units of the first and second
streams, where the final feature maps integrate with the prior
unit product using the new connection. For details, see Fig. 4.
Moreover, this technique, known as substructuring, provides
increased learning ability with the least execution time. The
result feature map of the convolution, processed with the

Zq,, = Conv,y, +q.

€))
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non-symmetric convolution kernel in the first stream, this
aids in the extraction of subsurface parameters and improves
model precision. A spatial composition layer then merges the
resulting output of the non-symmetric convolution layers.

A concurrent CNN framework was to utilize asymmet-
ric procedure with a sizeable architecture and attain low
computational complexity. This framework is to obtain fast
convergence of the training operation. However, a residual
interconnection evades the issue of vanishing gradients and en-
hanced accuracy. The network architecture comprises three (3)
correspondent procedures with various convolution intensities
for feature extraction. The first procedure edges two convo-
lutions (1x3) and (1x1) aggregated consecutively and passed
into the max-pooling layer. The second procedure is three (3)
convolution layers, the last two layers organized concurrently.
The third procedure employed one max-pooling to minimize
feature dimensions and obtain heterogeneous features. Each
stage is combined and passed to an average pooling with size
two (2) to decrease the execution time.

The average pooling layer output is input to the LSTM
layer, then forwarded to the dense layer. The resulting LSTM
structure goes to the dense layer. Following the dense layer is
the data evaluation by the softmax and the fully connected
layer for the classification and characterization of encoded
SCADA network traffic [57]. Given the effective method for
capturing long-term correlation structure by the LSTM, the
proposed approach employs an LSTM layer following the
average-pool layer. It consists of memory cells called neurons.
The cells are the input, forget, and output gates, and to
evaluate the input variables, each of the gates offers various
functions. For instance, based on the cell status, the forget
gate determines eliminating irrelevant information. To begin,
the forget gate uses a sigmoid gate ¢ to delete redundant
information from the additive layer result from f; and prior
cell result f;_;. Lastly, multiplying, the gathered information
is multiplied.

See Fig. 4 for a representation of the proposed model
framework and Table IV for the complete network architecture
of the proposed model, showing the features and specifi-
cations. Both classification and characterization of network
traffic employed similar network architecture and parameters.
It is to ascertain the viability of the proposed model for a
real scenario in network traffic classification and detection.
The ideal feature parameters setting of the proposed model
used for the two layers (classification and detection) is in
Table V. The proposed model performed optimally with the
following training structure: extraction of most useful data
features enabled by the adam optimizer with cross-entropy
loss function, mini-batch size of 30 for 80 iterations, an initial
learning rate of 0.001, ReLU activation function, and k-fold
for cross-validation is 2.

E. Dataset and Data Pre-processing

This study evaluated four (4) publicly available
datasets—the CIRA-CIC-DoHBrw-2020, NSL-KDD, and
CICIDS2017 datasets from the Canadian Institute for
Cybersecurity repository [58]. They were generating actual



JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

72
+* | Stream 2 .,
o lStreaml l *e
R v
PSSR, Jy . S % ___________ - %

N oo ; e .
B.-al'fﬁt!._h.'l-".r-":'..! H 12,13 conv _Ii| 13, 1°3comv 1}y [, substructure %
12,1*3¢C : By ;1 i

Input Data onv H RelU l. RelU HE H H H
RelU | : e :
L—————— H 1 - : H
H " 1 = " H
2 H I :
B " 1 = H H
g oo i
£ : = 1 3%}
8 H I s
3 - - Tea st
] H R
2 H H
H H H
=1 . -
H H
H H
H H
H H
H H
H o H
Ly - Full_Catenate H
R Sasmmisnaamanes .
:E‘?E H - H
- | 12,171 Conv .
FHE e :
B2l
S garasasnas smassasgietasemEerEsEgarEsssssasiic
- i —  AvPool LSTM Flatten = Softmax # FC
o+ » 3 Integration S APl T AL T A
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H .
-] .
s b
.

SO J—
Fig. 4. The proposed hybrid model framework with fully connected layers.
TABLE VI
TABLE IV FEATURE DESCRIPTION OF ICS-SCADA DATASET.
NETWORK ARCHITECTURE OF PROPOSED CNN+LSTM MODEL.
Feature Description
Module Features Specification PA1:VH-PA3:VH Phase A-C voltage phase angle

Input [batchsize, 14, 1] PM1:V-PM3:V Phase A-C voltage magnitude
Batch normalization | [batchsize, 14, 1] PA4:TH-PA6:TH Phase A-C voltage current phase angle
Conv1D_1 [batchsize, 14, 16] | 12, 1x3, ReLU, padding PM4:1-PM6:1 Phase A-C current magnitude
ConvlD_2 [batchsize, 14, 16] 12, 1x3, ReLU, padding PA7:VH-PA9:VH Pos.-neg.-zero voltage phase angle
ConvlD_3 [batchsize, 14, 30] | 28, 1x1, ReLU, padding PM7:V-PM12:V Pos.-neg.-zero voltage magnitude
MaxPooling1D_1 [batchsize, 7, 30] Pooling size=2 PA10:VH-PA12:VH | Pos.-neg.-zero current phase angle
ConvlD_4 [batchsize, 14, 30] | 28, 1x3, ReLU, padding PM10:V-PM12:V Pos.-neg.-zero current magnitude
ConvlD_5 [batchsize, 14, 30] | 28, 1x1, ReLU, padding F Frequency for relays
ConvlD_6 [batchsize, 14, 30] | 28, 1x1, ReLU, padding DF Frequency delta (df/dt) for relays
Aggregation_1 [batchsize, 14, 60] PA:Z Apparent impedance seen by relays
MaxPooling1D_2 [batchsize, 7, 30] Pooling size=2 PA:ZH Apparent impedance angle seen by relays
MaxPooling1D_3 [batchsize, 7, 30] Pooling size=2 S Status flag for relays

Aggregation_2 [batchsize, 7, 60]

AveragePooling1D [batchsize, 3, 120] Pooling size=2
LSTM [batchsize, 2, 25] 25 neuron, ReLU
Flatten [batchsize, 360]

Fully-connected [batchsize, 2] 4 nodes, softmax

TABLE V
IDEAL FEATURE PARAMETERS OF THE PROPOSED CNN+LSTM MODEL.

Parameters Layer 1 Layer 2
Total features 28 28
Selected features 14 14
Optimizer Adam Adam
learning rate 0.001 0.001
Loss function Cross-entropy loss | Cross-entropy loss
Epoch 10 10
Batch size 30 30
Activation function ReLU ReLU
Cross validation 2 k-fold 2 k-fold
Learnanble parameters | 8260 6648

network environment traffic activity, recent and prevalent
attacks like eavesdropping, brute force SSH, denial of
service (DoS), web attack, user to remote (U2R), man-in-
the-middle, brute force FTP, remote to local attack (R2L),
Heartbleed, DDos, botnet and Infiltration created for
cybersecurity intrusion detection systems [21], [59], [60].
IDS development has been quite challenging in specialized
scenarios like the industrial internet of things, particularly
SCADA, due to the unavailability of system-specific
datasets [48]. Hence, the development of testbeds targeted at
this specific industrial control systems (ICS) [48], [52]. These
advances aimed at resolving the lack of ICS datasets yielded
results by providing datasets like the ICS-SCADA [52]
dataset. This dataset was created using SCADA system
testbeds and is for SCADA cybersecurity research. See
Tables VI for features of the dataset.
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Fig. 5. Correlation matrix showing highly correlated features.

Data preprocessing is essential for obtaining good quality
data before feeding it into the proposed model. Preprocessing,
which includes data cleansing and normalization, was done
to assure the integrity of the data. Because generating the
dataset was by using standard web browsing behaviors for
benign-DoH traffic and domain name service channeling
procedures for malicious-DoH traffic, [29], it contains high-
dimensional features.

1) Data cleansing and normalization: The original dataset
consisted of 28 features, some of which are non-contributing.
Data cleansing eliminated irrelevant features leaving a balance
of 14 out of 28 features. Also cleaned were empty values,
NaN values, and infinity (co). The mean was to fill in
blanks and fields with infinity (co) values in a column. It
is to ensure that the model only receives valid data. The
Pearson’s correlation coefficient (PCC) was applied to the
dataset because it comprises strongly associated features, as
shown in the correlation matrix in Fig. 5. This approach was
required since it reduces over-fitting. Variables with a high
correlation value at the threshold of +0.7 were selected using
the PCC for consecutive variables with a correlation score
between -1 and 1, as shown in equation 10. It helps to ensure
that only the relevant features are selected, improving the
model’s performance. The selection of correlated variables
with a criterion of +0.7 is as in Fig. 6.

> (i — &) (yi — 9)
N2 12

V3 (@i (4 - 9)
where @ represents the PCC, x; represents the content of the
variables in the dataset, & represents the mean values of the x
variables, y; represents the sample variables, and ¢ represents
the mean values of the y variables.

Min-max scaler was the industry standard for measuring all

data features between values [0, 1] or [-1, 1]. It is to allow
for the scaling of features that are stable in the face of out-

Q= ; (10)
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Fig. 7. Dataset distribution showing the malicious class with majority
instances and benign class with minority instances.

liers. Following negative values in the data features, rescaling
brought it up to unit variance. The SMOTE technique is for
data balancing since the data contains an uneven distribution
of samples of the classes (total of a group is higher than the
other class, (see Fig. 7). The majority class of samples will
always skew in an unequal dataset. In an unequal dataset, the
majority class of samples will always be favored, resulting in
an anomalous dataset and, as a result, low model performance
on the minority class; yet, the achievement of the minority
class is substantial. This strategy works because it creates
new plausible data similar to existing minority class samples.
However, due to the potentiality of sample ambiguity as a
result of overlapping the classes without consideration for the
majority class, this technique should be used with caution.

SMOTE technique is a linear combination of two or more
similar samples from minority class (a) and (a®) defined as:

S =a+u. (a® —a), (11)
with 0 < 0 < 1; aR,

randomly chosen among the minority class nearest neighbors
of a.
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F. Experimental Environment

The suggested system was trained and tested on Google
Colab using various Keras and Scikit-learn libraries. We used
499,672 data samples, 70% for the training and the remaining
30% for testing. Furthermore, 20% of the training set for
validating the scheme during training (see Fig. 2). Keras’s
modelcheckpoint callback function was to track and halt
model training when the validation accuracy no longer im-
proved, allowing the best model. This method can also be on a
minicomputer; a high-level execution computer with GPU may
not be necessary. All experimentation can be with NVIDIA
GeForce GTX 1050 and 8GB VRAM, with a Windows 10
64-bit operating system.

IV. PERFORMANCE EVALUATION
A. Parameter Metrics

This section demonstrates the achievement of the presented
scheme in classifying network traffic (DoH or NonDoH) and
anomaly detection (benign or malicious) in the network traffic.
In machine learning, direct (machine/environment dependent)
and indirect (FLOP: Float-point operations) metrics are used in
measuring computational complexity [61]. Using performance
assessment measures represented by equations (12), (13), (14),
the AUC and (16). The suggested hybrid model for efficient
classification and characterization (detection) performance was
compared to research by [42], [43], confusion matrix measure-
ment as shown in Table VII, and computation time.

AUC 1is a metric that summarizes performance across all
classification parameters. It ranges in value from O to 1. It
is to assess the classification accuracy of a model regardless
of the categorization criterion employed. A model with 100%
incorrect classification will have an AUC value that tends to
0.0, while the one with 100% correct classifications will tend
to 1.0.

TP+TN

A f—
Uy = P T TN+ FP+ FN'

12)

TP

T Positi te = ———
ruePositiveRate TP FN

= Recall = Sensitivity,
(13)

TP

Positive PredictiveValue (Precision) = TPLEP’
14

_ 2(Precision.Recall)
~ Precision + Recall '

Fy 5)

Positioning F'N, T'P, T'N, and F'P represent false negative,
true positive, true negative, and false positive, respectively.

Another evaluation metrics considered in this study is the
MCC. It is to assess the reliability of the accuracy of the
classification. It is useful when desired to have a metric that
is not affected by unbalanced datasets [31]. The disadvantage
of relying on Fl-score is that it can result in overoptimistic
inflated results, especially on imbalanced datasets. To address
this, the authors of [31] provided a complete study and

TABLE VII
CONFUSION MATRIX MEASUREMENT.

Confusion matrix
Predicted negative class
Right benign (TN)
Wrong benign (FN)

Predicted positive class
Wrong malicious (FP)
Right malicious (TP)

Actual (-) class
Actual (+) class

DaH

- 0.6

Actual

-04

NonDoH

-02

Non boH

Predicted

Fig. 8. Confusion matrix of network traffic classification [DoH/NonDoH].

explanation for MCC as a viable alternative. MCC has a value
range of -1 to +1, signifying cases of perfect misclassification
and perfect classification, respectively. MCC is mathematical
as in (16).

MCC = (16)

TP-TN — FP-FN

V(TP +FP)-(TP+FN)-(TN + FP)- (TN + FN)’
(17)

B. Proposed Model Performance Evaluation

The proposed model is excellent for detecting classification
and detection. The proposed scheme can classify encoded
network traffic as DoH or NonDoH with high precision,
recall, and Fl-score values. However, there is a need to
improve the classification ability of encoded traffic. The traffic
classification accuracy needs to be improved compared to
the characterization accuracy. Fig. 8 shows the confusion
matrix of the proposed CNN-LSTM scheme for encoded
traffic classification, providing an error matrix between the
predicted and the actual. It is evident from the result that the
proposed CNN-LSTM scheme is promising in detecting and
classifying the encoded traffic with minimal misclassification.
It is important to note that a more sophisticated high-volume
application-layer attack characterizes the encoded DNS traffic.

Subsequently, Fig. 9 is the confusion matrix of the proposed
models’ performance in characterizing benign and malicious
network traffic with 98.88% and 99.68%, respectively.

However, to resolve the possibility of ambiguity of samples
and bias in misleading results due to data balancing by the
SMOTE technique, the proposed model evaluated the dataset
without balancing. See section Fig. 10, showing high precision
of 95%.67 for Benign and 99.45% for malicious detection. The
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Fig. 9. Confusion matrix of anomaly detection [benign/malicious].
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Fig. 10. Confusion matrix of anomaly detection [benign/malicious] without
data balancing.

model performance on both balanced and unbalanced datasets
illustrates the model’s performance regarding

Integrating CNN and LSTM networks significantly im-
proves the model’s ability to recognize intricate features in
both spatial and sequential domains. The hybrid architecture
excels in capturing complex patterns, leading to high-accuracy
performance and a deep understanding of its behavior and mis-
classification instances. The study confirms the effectiveness
of the hybrid CNN-LSTM classification model in handling
complex data patterns, making it a promising approach for
various classification tasks in diverse domains. The insights
gained from this study pave the way for future enhancements
and applications of hybrid models in real-world scenarios.

C. Reliability Test for the Proposed Models’ Performance

The proposed hybrid DL model evaluated the ICS-SCADA,
NSL-KDD, and CICIDS2017 datasets to validate the reliability
of the suggested model. The proposed model had significant
performance in improved detection accuracy and reduction in
computation time. Tables VIII and IX show the significance of
the model performance for train and test simulations. Figs. 11
and 12 represent the accuracy and loss performance of the
proposed model in the ICS-SCADA dataset. It demonstrates
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Fig. 11. Accuracy graph showing the proposed models’ performance on ICS-
SCADA dataset.
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Fig. 12. Loss graph showing the proposed models’ performance on ICS-
SCADA dataset.

the model training performance over epochs; this is important
for illustrating the achievement of high accuracy. Fig. 13 is
the confusion matrix showing the performance of the proposed
model on the ICS-SCADA binary and three class datasets. It
shows that the proposed model is significant in the detection
of attacks, benign and zero-day attacks. We demonstrate its
applicability for intrusion detection in I[IoT (SCADA) commu-
nication networks. Also, Fig. 14 demonstrates the outperfor-
mance of the proposed model over the existing studies of [42]
and [43] in accuracy and execution time on similar datasets.
Further validating the suitability of the proposed model on
multi-class datasets.

D. Comparative Analysis of the Proposed Model Across State-
of-the-art Datasets

Table X shows the proposed model’s performance compared
to state-of-the-art models in recent studies. It is the classi-
fication and detection reports based on training and testing
time, accuracy, precision, recall, AUC parameter metrics, and
datasets used regarding the relevance of current cyber-security
and SCADA datasets. In comparison with the study by [42] on
the CICIDS2017 dataset with a detection accuracy of 99.03%,
training time (85255.63 s) and testing time (15313.1036 s).
The proposed model outperformed utilizing the same dataset
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TABLE VIII
TRAINING MODEL PERFORMANCE ACROSS EVALUATED STATE-OF-THE-ART DATASETS.
Dataset Training time (s) | Train accuracy (%) | Train precision (%) | Train recall (%) | Train F1 score | Train AUC
NSL-KDD [59] 500.51 97.51 97.59 97.44 97.59 0.9969
CICIDS2017 [60] 589.40 99.60 99.62 99.58 99.40 0.9999
CIRA-CIC-DoHBrw-2020 [21] 745 98.32 98.32 98.32 98.31 0.9975
ICS-SCADA [52] 265.17 98.05 98.30 98.30 98.23 0.9972
TABLE IX
TESTING MODEL PERFORMANCE ACROSS EVALUATED STATE-OF-THE-ART DATASETS.
Dataset Testing time (s) | Test accuracy (%) | Test precision (%) | Test Recall (%) | Test F1 score | Test AUC
NSL-KDD [59] 0.000136 97.79 97.85 97.73 97.92 0.9969
CICIDS2017 [60] 0.000297 99.74 99.74 99.74 99.74 0.9999
CIRA-CIC-DoHBrw-2020 [21] 0.000324 99.28 99.28 99.75 99.23 0.9975
ICS-SCADA [52] 0.000252 99.05 99.30 99.30 99.19 0.9972




AHAKONYE et al.: CLASSIFICATION AND CHARACTERIZATION OF ENCODED ...

77

TABLE X
MODEL COMPARISON OF EXISTING APPROACHES UTILIZING A HYBRID OF THE CONVOLUTIONAL NEURAL NETWORK AND LONG SHORT-TERM
MEMORY (CNN+LSTM).

Model/ Author Training time (s) | Accuracy (%) | Precision (%) | Recall (%) | F1 (%) Dataset
NSGA-II-aJG and CNN+LSTM [42] 15313.103 99.03 99.26 99.35 99.36 CICIDS2017
CNN-LSTM [43] 542 89.23 86.86 88.58 88.58 NSL-KDD

CNN-LSTM [44] - 99.78 - - - KDD99
DL-IDS (CNN+LSTM) [45] - 98.67 97.21 93.32 93.32 CICIDS2017
This study (CNN+LSTM) 265.17 99.35 99.30 99.28 99.30 ICS-SCADA
This study (CNN+LSTM) 589.40 99.74 99.74 99.74 99.74 CICIDS2017
This study (CNN+LSTM) 500.51 97.51 97.51 97.51 97.51 NSL-KDD

with an improved detection accuracy of 99.73%, reduced TABLE XI

training time (589.40), and testing time (0.000297).

The proposed model showed significant improvement in
evaluating the NSL-KDD dataset for multiple attack types,
recording a detection accuracy of 97.51% with minimal train-
ing and testing time of 500.51 s and 0.000136 s, respectively.
Also, the proposed model outperformed all other models in
a combined advantage of parameter metrics, as shown in
the table. However, the study by [43] using the NSL-KDD
dataset recorded a computation time of 61s with poor accu-
racy (89.23%) and precision (86.86%), recall (88.58%) with
no consideration for AUC value. To reduce computation time,
the authors transformed the standardized dataset into an image
to achieve a swifter model. This approach does not apply to
real scenarios, hence, considered not a fair comparison.

E. Resilience Performance of the Proposed Model: Computa-
tion Time, Accuracy, and MCC

Following the comparative analysis, an in-depth investiga-
tion of the performance of the proposed hybrid DL model
shows improved and better performance in a combined ad-
vantage of parameter metrics over compared recent studies.
On the recent high dimensional CIRA-CIC-DoHBrw-2020
cyber-security dataset, the proposed scheme demonstrated effi-
ciency in classifying and characterizing attacks in an encoded
SCADA network traffic communication with high detection
accuracy, precision, recall, and AUC. As explained in Sec-
tion IV-A, the resilience and reliability of the proposed model
was investigated using the MCC to resolve the drawback
due to reliance on the Fl-score and checkmate the tendency
for overfitting. Table XI shows that the MCC performance
of the proposed model was consistent on all datasets op-
tions. This metric authenticates the detection accuracy of the
proposed model, confirming its non-bias due to overfitting.
It also validates the applicability of the proposed model in
real scenarios with unbalanced data. The proposed model
also shows capability in detecting multiple attack types with
precision, as witnessed in the evaluation results of NSL-
KDD and CICIDS2017. Also, in a SCADA environment, the
proposed model outperformed with a combined advantage of
high precision of 99.30%, accuracy (99.35%), recall (99.30%),
AUC (0.9972), and the minimal training and testing time of
265.17 s and 0.000252 s respectively, on the high-dimensional
ICS-SCADA dataset.

MODEL PERFORMANCE VALIDATION USING THE MATHEWS CORRELATION
COEFFICIENT (MCC) ACROSS EVALUATED DATASETS.

Dataset Test MCC
NSL-KDD [59] 0.9724
CICIDS2017 [60] 0.9965
CIRA-CIC-DoHBrw-2020 [21] 0.9975
ICS-SCADA [52] 0.8864

V. CONCLUSION

This paper proposes a CNN-LSTM hybrid model to accu-
rately categorize network traffic as DoH or NonDoH, indi-
cating whether the traffic is benign, malicious, or zero-day.
CNN was to extract key characteristics from network traffic;
for effective classification, these traits constitute the input to
the LSTM. Max and average pooling enabled the extraction
of significant features from the feature map according to filter
size and strides. It aided the reduction in computation costs.
The model’s batch normalization enables faster convergence
with minimal computing complexity, regardless of the amount
of network data. These features enabled the swiftness of the
proposed model, thereby improving its stability and minimiz-
ing execution time. Dropout layers helped protect the model
from overfitting. As a result, it enhanced the network’s robust-
ness. The findings also showed that the proposed hybrid model
decreases computing complexity while increasing precision
and accuracy. The simulation result demonstrates the sug-
gested approach’s efficiency, which shows significant detection
accuracy, precision, recall rate, the least execution time, AUC,
and MCC across evaluated datasets. The suggested hybrid
model outperformed on large and sparse datasets compared to
previous models. As a result of the reliability test using four (4)
publicly available datasets, the suggested model applies to any
network system in real-time. A future research direction is
introducing Gaussian noise to the model and investigating the
computational cost.
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