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Analyzing Age of Information in Multiaccess
Networks with Time-Varying Channels:

A Fluid Limits Approach
Feng Yuan, Zeyu Hu, and Zhiyuan Jiang

Abstract—In this paper, we adopt the fluid limits approach
to analyze the age of information (AoI) in a wireless multi-
access network where users share the channel and transmissions
are unreliable. We prove the convergence of the AoI occupancy
measure to the fluid limit, represented by a partial differen-
tial equation (PDE). Furthermore, we demonstrate the global
convergence to the equilibrium of the PDE, i.e., the stationary
AoI distribution. Within this framework, we first consider the
case of i.i.d. channel conditions and generate-at-will statuses
for users. We demonstrate that a previously established AoI
lower bound in the literature is asymptotically accurate, and
a straightforward threshold-based access policy can be asymp-
totically optimal. Next, we consider the case where the channel
states are time-varying, i.e., the Gilbert-Elliott channel model. We
assume partial channel state information (CSI) is available due to
channel probing singals. Theoretical analysis reveals that only a
fraction of CSI is required to approach the optimal performance.
Additionally, we numerically evaluate the performance of the
proposed policy and the existing Whittle’s index policy under
time-varying channels. Simulation results demonstrate that the
proposed policy outperforms the Whittle’s index policy since the
latter cannot adapt to time-varying channels.

Index Terms—Age of information, fluid limits, time-varying
channels, wireless multiaccess networks.

I. INTRODUCTION

AGE of information (AoI) [2] is defined as a timeliness
metric to quantify the time elapsed since the generation

of the freshest information received at a destination. In a time-
critical networked system, it is desirable to maintain a low
level of AoI at a node that depends heavily on the specific
information [3], [4]. Therefore, the minimization of AoI is
a systematic task, encompassing lowering the communication
delay, sensing delay, data processing delay and considering
their interplay. In this paper, we focus on the part of AoI that is
attributed to wireless network scheduling, especially scenarios
with a large number of users and time-varying channels.

In wireless networks, two fundamental challenges exist for
AoI optimization: Collisions and channel fading. To circum-
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vent collisions among user transmissions, a carefully designed
scheduling algorithm is necessary. Assuming only one user
can occupy the channel at any time instance, the scheduler
needs to arrange the order and frequency of user transmissions,
which inevitably introduces aging of information maintained
by each user. On the other hand, channel fading results in a
time-varying transmission environment, wherein not only the
user packets can be lost due to erroneous transmissions, but
also the error probability changes over time. Regarding these,
many works have been dedicated to analyzing and optimizing
AoI in wireless networks, which are discussed below.

A. Related Work

Considering active sources in a wireless multiaccess net-
work, i.e., the transmitted information is always fresh, the
AoI is in fact identical with time-since-last-service [5]. With
users having heterogeneous i.i.d. transmission successful prob-
abilities, denoted by qn ∀n ∈ [1, · · ·, N ], and one of them is
scheduled each time, Kadota et al. [6] found that the time-
average AoI is lower bounded by

∆̄π ≥ 1

2N

(
N∑

n=1

1
√
qn

)2

. (1)

The authors subsequently propose several optimization algo-
rithms. The age-greedy policy is shown to be optimal in
homogeneous networks when qn = q, ∀n. The stationary
randomized policy with optimal randomization is shown to
be within 2-times the optimum. Neither greedy and station-
ary policy achieves as good performance as the Whittle’s
index policy and Lyapunov-based max-weight policy, which
are essentially identical regarding their scheduler criterion—
they achieve very close-to-optimal performance in simulations,
however can only be proven with loose bounds due to their
non-renewal policy nature. Several other works also derive
the Whittle’s index policy in different scenarios that show
similarly good performance, and again, without theoretical
optimality guarantees [7], [8]. A recent work by Maatouk et
al. [9] proved that Whittle’s index policy is asymptotically
optimal, when the number of scheduled users scales with the
total number of users and they both go to infinity. Talak et
al.showed that the stationary randomized policy is peak-AoI
optimal even in a general network topology, wherein peak-AoI
denotes the AoI right before delivery [10].

The majority of existing AoI research focuses on the case
with complete channel state information. However, in real-
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world communication systems, these are challenging to meet.
Ref. [11] and [12] consider the AoI minimization problem
for a network with general interference constraints and time
varying channels, with perfect CSI and unknown channel
state, respectively. The case with perfect CSI demonstrates
a significant age improvement compared to the case with
unknown channel state. Ref. [13] proposes a scheduling policy
for heterogeneous and unreliable multi-channel systems where
the channel states are unknown when scheduling decisions are
made. Ref. [14] studies the minimum-age scheduling problem,
wherein AoI is not directly observable to the scheduler, and
proposes a policy that is an approximation to the greedy
policy. Ref. [15] analyzes a class of information freshness
metrics in the setting where a large number of terminals
access the channel via a slotted ALOHA (SA) policy and
each wireless user-sink link is modelled as a Gilbert-Elliot
channel. A relevant work is presented in [16] and [17]. The
work in [16] derives the Whittle index for AoI minimiza-
tion in a system having iid/Markovian channels and multiple
information settings (without CSI/ with CSI/ delayed CSI).
Ref. [17] analyzes three scenarios with an i.i.d. ON-OFF
channel, namely systems without CSI, systems with CSI,
and systems with partial CSI, and derives the corresponding
Whittle index-based scheduling policies. Nevertheless, neither
of these two papers considers the AoI minimization problem
in the scenario with Markov channels and partial CSI, and it
has not been demonstrated theoretically that the given policies
can achieve optimal performance.

Summarizing existing works, four key problems still remain
to be solved. P1: Is the lower bound in (1) tight or at least
asymptotically tight? What policy can be proved to achieve
the optimum? P2: Most works focus on AoI scheduling policy
design but analytical results are less available. How to analyze
the AoI performance of scheduling policies? P3: Considering
practical signaling concerns, how to decentralize the scheduler
operation? P4: In a time-varying channel environment, how to
design a scheduling policy. Which percentage of CSI should
be known to achieve optimum?

B. Our Contributions
In this paper, we address P1–P4 by adopting the fluid limits

approach. Our contributions include:
• We demonstrate that the AoI occupancy measure of a

broad range of threshold-based policies with a large
number of users converges to a fluid limit. This limit
is expressed as a partial derivative equation (PDE). We
also prove that the PDE has a globally stable equilibrium
point, which can be used to describe the stationary
distribution of AoI.

• We demonstrate that the lower bound in (1) is asymp-
totically accurate, and a straightforward threshold-based
policy can achieve the optimal result, with the thresholds
explicitly determined from the fluid limits. We also
derive the AoI probability distribution function under the
threshold-based policy, which allows us to quickly calcu-
late AoI statistics such as moments and tail distribution.

• We further investigate the age performance of wireless
multiaccess networks with time-varying channels. By
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Fig. 1. An exemplary AoI flow diagram assuming the fluid limit exists.

utilizing partial CSI available at the start of each time slot,
we derive the optimal thresholds and long-term average
AoI. Our theoretical and experimental results demonstrate
that optimal AoI performance can be achieved even with
only a limited amount of channel state information.

C. Organization

The rest of the paper is organized as follows. In Section II,
an illustration example is given to highlight the idea of fluid
limits. Section III introduces the system model and modeling
language. Section IV lays down the mathematical tool that
is used. Section V and VI use the tool to analyze the time-
invariant and time-varying channel, respectively. The simula-
tion results are shown in Section VII. Finally, in Section VIII,
conclusions are drawn with future work discussed.

II. ILLUSTRATING EXAMPLE OF AOI FLUID LIMITS

Consider a network of N users where each user is sched-
uled with a constant rate of µ, and the scheduling events
happen based on a Poisson process in continuous time. The
transmission is reliable. Fig. 1 shows an exemplary occupancy
measure of AoI at a certain time t, which is assumed to admit
a probability distribution function. Assume that the system is
in equilibrium and let us consider the balance equation of age
flows, the left-hand side of which represents the expected in-
flow to a specific AoI h during a time duration of dh, and the
right-hand side the expected out-flow from h:

f(h− dh) = f(h) + µf(h)dh. (2)

The in-flow denotes the aging from h− dh, and the first term
of the out-flow is due to aging from h. The second term
of out-flow represents the expected amount of agents that
are scheduled and returns to AoI of zero. This formulation
resembles fluids flow in continuous time and the dynamic
is characterized by an Ordinary Differential Equation (ODE).
When dh is sufficiently small, we obtain

f ′ = −µf, f(0) = µ. (3)

The initial condition is obtained by considering the flow at
h = 0. This yields a solution which reads

f = µe−µh, h > 0. (4)
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Alternatively, one can solve for the solution of an embedded
Markov chain describing the evolution of AoI and obtain the
exactly same AoI stationary distribution, which is omitted here
due to brevity. The rationality of this fluid approach is that,
with growing number of agents, one expects that the law of
large numbers takes effect, such that the expected flow in (2),
which takes expectation in the probability sense, coincides
with the actual fraction of agents that are scheduled. This is
called the fluid limits. Consequently, the calculation of AoI
statistics follows immediately.

Three key questions exist in applying this idea. Q1: What
are the conditions allowing the limiting ODE or PDE (partial
DE), as well as its equilibrium, to exist? Q2: In this example,
the expected scheduled agents per time unit is µN which also
goes to infinity. In practice, it is more reasonable to consider
a finite number of scheduled agents. Does the fluid limit also
exist? Q3: Can we use this to solve particular problems in AoI?
In following sections, we endeavor to answer these questions.

III. FLUID LIMIT MODELING LANGUAGE FOR AOI
In this section, fluid limit modeling specifications for AoI

evolution of many users (hereinafter we use agents) are
introduced, which are described in a general setting such that
they can be adopted in as many scenarios as possible. We
first describe a continuous time Markov chain (CTMC)-based
formulation, which is also known as the Markov processes
of pure jump type. However, this formulation is problematic
in considering the convergence of the AoI occupancy mea-
sure. Therefore, it is transformed to a rescaled time domain.
Connections to the widely-used discrete time Markov chain
(DTMC)-based AoI model [6], [18], which is inconvenient to
apply the fluid limits, are also discussed.

A. Multi-Class CTMC-Based AoI Model
We assume that agents in the system belong to a finite num-

ber of classes, which are prescribed based on their features,
e.g., channel conditions, packet arrival patterns, performance
metrics. Agents within each class are considered exactly the
same and hence interchangeable, i.e., agents having identical
state evolution dynamics. In practice, this assumption can be
relaxed to be approximately the same. The total number of
agents and classes are denoted by N and C respectively,
with Nc denotes the total number of agents in class-c, hence∑C

c=1 Nc = N . The evolution of the system is captured by a
CTMC, which is described as follows.

Definition 1: A CTMC model for AoI is a tuple H =
(H, T ,d0), where:

1) H = (h1, · · ·,hC) denotes the vector of AoI
of N terminals categorized by C classes, wherein
hc = (hc,1, · · ·, hc,Nc

). Each hc,i takes value in
R≥0. d0 ∈ R≥0 is the initial state of the model.

2) T = {τ1, · · ·, τM} denotes the set of transitions of the
form τj = (a, ϕ(H),v(H), r(H)), where:

a) The label of the transition is denoted by a.
b) ϕ(H) denotes the set of inequalities that need to be

satisfied by the transition, indicating the conditions
that such a transition happens.

c) The update vector is denoted by v(H) ∈ RN ,
representing the net change on the state by the
transition. It is required that H + v(H) ∈ R≥0

whenever ϕ(H) is true.
d) The transition rate function is denoted by r(H) :

R≥0 → R≥0, which specifies the transition as a
function of the current state and is required to
be Lipschitz continuous and bounded in general.
The time interval between successive transitions is
assumed to be exponentially distributed with rate
r(H).

This definition is described in a quite general way. To give a
concrete example, let us consider an AoI scheduling problem
based on the Whittle’s index [7], [8], wherein the index for
agent-n at time-t is wn(t) and the agent with the highest index
is scheduled at every time slot. The transmission is assumed
to be successful with probability ps ∈ (0, 1] due to channel
error, and in the case of success, the AoI decreases to zero.
The mean time interval between successive scheduling events
is set to 1/r0. The corresponding transitions can be described
as (using agent-1 as a representative):

1) τ1 = (Scheduled and successful update, w1(t) >
wi(t)(∀i ̸= 1), (−h1,1(t),∆(t), · · ·,∆(t)), psr0);

2) τ2 = (Scheduled and unsuccessful update, w1(t) >
wi(t)(∀i ̸= 1), (∆(t), · · ·,∆(t)), (1− ps)r0),

wherein ∆(t) denotes the time elapsed since the last schedul-
ing event.

Define the occupancy measure among all agents, with AoI
of H(t) in class-c by

XN
c,t(h) =

1

N

Nc∑
i=1

δhc,i(t)(h), (5)

where δy(x) denotes the Dirac delta distribution which is a
linear mapping: D(R) → R that satisfies

∫
δy(x)f(x)dx =

f(y) and D(R) denotes the set of test functions. Denote the
faction of agents that are in class c and with AoI lower than
h as

FN
c,t(h) =

∫ h

0

XN
c,t(x)dx. (6)

Remark 1: One critical issue of this formulation, making it
inapplicable for the fluid limits, is that when the system size
grows large, i.e., N is large, the resultant occupancy measure
of agents’ AoI is not tight (definition of tightness of measure
is given in (27)), in fact it has support approaching infinity,
and therefore not convergent to any probability measure. This
shall be made evident in the proof of the main theorem. To
address this, a time-rescaled CTMC formulation is introduced
as follows.

B. Transformation to Rescaled CTMC

Definition 2: A time-rescaled CTMC model for AoI is a
tuple Ĥ = (Ĥ, T̂ , d̂0), which is defined identically with
Definition 1, except that r̂(H) = Nr(H), ∀H .

In essence, Ĥ can be viewed as an accelerated version of
H, in the sense that time intervals between scheduling events
are scaled down with the number of agents. By a stochastic
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coupling argument, it is clear that the following lemma is true
because everything happens sooner.

Lemma 1: The occupancy measure of Ĥ satisfies

F̂N
c,t(h) = FN

c,t(Nh), (7)

and consequently, if X̂N
c,t(h) converges weakly to a probability

measure x̂c,t(h) with N → ∞ (later formalized), the mean
AoI of Ĥ (i.e., E[ĥ]) and H (i.e., E[h]) satisfy

E[ĥ] =
C∑

c=1

∫ ∞

0

hx̂c,t(h)dh =
E[h]
N

. (8)

Fortunately, by this definition, we can prove in many
practical cases the occupancy measure X̂N

c,t(h) is tight in the
fluid limit regime, and hence converges weakly to a continuous
probability measure, which facilitates our subsequent analysis.

On the flip side, by making this time rescaling, we are
unable to analyze the AoI exactly. As we shall see in the
next section, by adopting the fluid limit approximation, the
approximation error is O(1/N). Combined with (8), it is clear
that we can only solve for the linear scaling factor with N ,
i.e., asymptotic optimality—which is sufficient in many cases
because AoI indeed scales linearly with N , and when N gets
large, the error becomes infinitesimal.

C. Connection with DTMC Formulation

In most previous works on AoI scheduling, e.g., [6], [8],
[9], [18], the AoI evolution is modeled by a DTMC. In this
paper, we adopt CTMC, whereas it is desired to draw the
connection between them. In fact, the DTMC can be viewed as
the embedded DTMC of the CTMC. More specifically, denote
the infinitesimal generator matrix Q of H as

qH,H′ =
∑

{r(H)|τ ∈ T , ϕ(X) is true,H ′ = H+v(H)},
(9)

and set the transition rate out of each state to one, i.e., the
mean scheduling interval is 1, that is

r−H =
∑

H′ ̸=H

qH,H′ = 1. (10)

Leveraging the rescaling technique, we obtain Ĥ. The total
number of update attempts (i.e., scheduling events) with
rescaled CTMC is hence N (tN) where N is a Poisson random
variable with mean rate of r−H , and the number is ⌊tN⌋ for
the DTMC. We obtain

lim
N→∞

N (tN)

⌊tN⌋
= lim

N→∞

N (tN)/tN

⌊tN⌋ /tN
= 1, (11)

which is attributed to the law of large numbers. In other words,
this equation shows that by adjusting the rate functions of
CTMC, with N growing large, the same number of scheduling
events have happened for both CTMC and DTMC at any time
t, making them statistically equivalent. Using the uniformiza-
tion technique [19] can also leads to this conclusion.

IV. DETERMINISTIC FLUID LIMIT OF AOI AND
STATIONARY REGIME

In this section, we develop our main result on the fluid limit
of AoI based on the time-rescaled CTMC model. We consider
a specific but widely-adopted type of scheduling policies for
AoI, which is threshold-type policies. In particular, we assume

1) At every scheduling event, one agent1 is randomly
chosen from the agents with AoI greater than their
(possibly different) thresholds with equal probabilities.
In the case of no agent has AoI above its threshold, the
system stays idle.

2) Agents in each class have the same threshold Hc.
Note that the threshold-type policy is adopted by many

papers [9], [21]–[23]. It is both intuitive, in the sense that
AoI higher than a threshold should be prioritized, and proven
optimal in many scenarios. However, usually the exact thresh-
olds cannot be solved explicitly. In fact, we will show that
even in scenarios wherein threshold-type polices are not
considered optimal, and index-based policies [6]–[8] have
superior performance, an optimized threshold-type policy can
achieve asymptotically optimal AoI with proven and closed-
form performance expressions.

A. Fluid Limit

When N gets large, the evolution of the time-rescaled
CTMC becomes close to a deterministic fluid limit, charac-
terized by differential equations.

Theorem 1: Assume that the initial occupancy measure c
converges weakly to a deterministic distribution x̂0 which
admits a density {f̂c,0|c = 1, · · ·, C}. Then as N approaches
infinity, X̂N

c,t of each class converges in distribution to a
deterministic fluid limit processes {x̂c,t|t ∈ R≥0} which
admits a density for all t denoted by c and CDF by F̂c(t, h),
is the unique solution of the following PDE:

∂f̂c(t, h)

∂t
=

− ∂f̂c(t, h)

∂h
− ps,cf̂c(t, h)

1−
∑C

c=1 F̂j(t, Ĥj)
, if h > Ĥc;

−∂f̂c(t, h)

∂h
, if 0 ≤ h ≤ Ĥc,

(12)

∀h ≥ 0,∀c, f̂c(0, h) = f̂c,0, (13)

∀t ≥ 0,∀c, f̂c(t, 0) =
ηc − F̂c(t, Ĥc)

1−
∑C

j=1 F̂j(t, Ĥj)
ps,c, (14)

where ηc = Nc/N .
Proof: The proof is based on previous works on fluid

limits and mean-field approximations [24]–[27]. First, define
the characteristic function, i.e., φN

Ĥ,c
(ω, t): R×R≥0 → C, of

the occupancy measure as

φN
Ĥ,c

(ω, t) ≜
∫ ∞

0

ejωhdF̂N
c,t(h) =

∫ ∞

0

ejωhX̂N
c,t(h)dh.

(15)

1Generalization to a finite number of agents is straightforward. However,
an infinite number of scheduled agents [9], [20] needs a different formulation.
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For ease of notation, we use φN
c (t) for φN

Ĥ,c
(ω, t). Note that

by definition and (5)–(7), φN
c (t) = 1

N

∑Nc

i=1 e
jωhc,i(t), which

is the sample average. Consider the generator of φN
c (t):

G(φN
c (t)) ≜ lim

dt→0

E[φN
c (t+ dt)− φN

c (t)|Ft]

dt
, (16)

where Ft is the natural filtration of X̂N
c,t(h).

Lemma 2: Define

MN
t,c ≜ φN

c (t)− φN
c (0)−

∫ t

0

G(φN
c (s))ds, (17)

then MN
t is a zero-mean Ft-martingale.

Proof: For any t > s,

E[MN
t,c|Fs]

= MN
s,c + E

[
φN
c (t)− φN (s)−

∫ t

s

G(φN
c (s))ds

∣∣∣∣Fs

]
= MN

s + E
[
φN
c (t)− φN

c (s)|Fs

]
−
(
E
[
φN
c (t)|Fs

]
− φN

c (s)
)

= MN
s . (18)

The mean follows directly from the definition.
Then we calculate G(φN (t)) specifically as:

G(φN
c (t)) = Gc,1 +Gc,2, (19)

Gc,1 = lim
dt→0

1

dt

[∫ ∞

0

ejωh 1

N

Nc∑
i=1

δhc,i(t)+dtdh

−
∫ ∞

0

ejωh 1

N

Nc∑
i=1

δhc,i(t)dh

]
,

= lim
dt→0

1

dt

[
1

N

Nc∑
i=1

ejω(hc,i(t)+dt) − 1

N

Nc∑
i=1

ejω(hc,i(t))

]
,

= jω
1

N

Nc∑
i=1

ejωhc,i(t),

Gc,2 = lim
dt→0

ps,c
βtNdt

E[Λ(N, dt)]

·
Nc∑
j=1,

hc,j(t)>Hc

[∫ ∞

0

ejωh 1

N

(
Nc∑
i=1

δhc,i(t) + δ0

−δhc,j(t)

)
dh−

∫ ∞

0

ejωh 1

N

Nc∑
i=1

δhc,i(t)dh

]
,

=
ps,c
βt

∫ ∞

0

ejωh
Nc∑
j=1,

hc,j(t)>Hc

1

N

(
δ0 − δhc,j(t)

)
dh, (20)

βt =

∫ ∞

0

∑
{c,i|hc,i(t)>Hc}

δhc,i(t)dh =

C∑
c=1

Nht>Hc

N
, (21)

wherein Λ(N, dt) denotes a Poisson distributed random vari-
able with rate N and time of dt, and Nht>Hc

denotes the
number of agents in class c that have AoI larger than the
threshold. The last equality in (20) is because when dt → 0,
the Poisson distributed Λ(N, dt) is closely approximated by a
Bernoulli random variable with parameter c. The calculation

above derives the expected infinitesimal change in φN
c (t).

Specifically, with probability ps,c

βtNdt which represents that an
agent is chosen uniformly randomly from all eligible agents
with AoI larger than their thresholds, an agent is scheduled
and updates successfully with AoI returning to zero—such an
event happens with a mean rate of N in the time-rescaled
CTMC.

Now let us consider the quadratic variation of MN
t,c. The

generator of ∥φN
c (t)∥2 is

G(∥φN
c (t)∥2) = G′

c,1 +G′
c,2, (22)

G′
c,1 = lim

dt→0

1

dt

(∫ ∞

0

ejωh 1

N

Nc∑
i=1

δhc,i(t)+dtdh

)2

−

(∫ ∞

0

ejωh 1

N

Nc∑
i=1

δhc,i(t)dh

)2
 ,

= 2jω

(
1

N

Nc∑
i=1

ejωhc,i(t)

)2

G′
c,2 = lim

dt→0

ps,c
βtNdt

E[Λ(N, dt)]

·
Nc∑
j=1,

hc,j(t)>Hc

[(∫ ∞

0

ejωh 1

N

(
Nc∑
i=1

δhc,i(t) + δ0

−δhc,j(t)

)
dh
)2 −(∫ ∞

0

ejωh 1

N

Nc∑
i=1

δhc,i(t)dh

)2
 ,

=
2ps,c
βt

1

N

Nc∑
j=1,

hc,j(t)>Hc

(
1− ejωhc,j(t)

) 1

N

Nc∑
i=1

ejωhc,i(t)

+
ps,c
βt

1

N2

Nc∑
j=1,

hc,j(t)>Hc

(
1− ejωhc,j(t)

)2
. (23)

Note that we obtain the second term in (23) as

ps,c
βt

1

N2

Nc∑
j=1,

hc,j(t)>Hc

(
1− ejωhc,j(t)

)2
≤ 4ps,cNht>Hc

βtN2
≤ 4ps,c

N
,

(24)
where the last inequality follows from βt >

Nht>Hc

N , ∀c. The
term goes to zero with N getting large, i.e., define

Ḡ′
c,2 =

2ps,c
βt

1

N

Nc∑
j=1,

hc,j(t)>Hc

(
1− ejωhc,j(t)

) 1

N

Nc∑
i=1

ejωhc,i(t).

(25)
It follows that

M
′N
t,c ≜ ∥φN

c (t)∥2 − ∥φN
c (0)∥2 −

∫ t

0

G(∥φN
c (s)∥2)ds (26)

is also a Ft-martingale. The following lemma establishes the
limiting behavior of the occupancy measure XN

c,t(h).
Lemma 3: When N goes to infinity, any sequence XN

c,t(h)
has a convergent subsequence whose limit is denoted by
f̂c,t(h), and f̂c,t(h) has continuous sample path.
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Proof: Let us first prove the tightness of XN
c,t(h). From

[27, Lemma 4.6], it is sufficient to show the tightness of
AoI measure of agent-1, i.e., ĥc,1(t) = hc,1(t)/N . Based on
[28, Corollary 4.3], the following needs to uphold: For every
ϵ, T > 0, there exists H > 0 such that

inf
N

Pr
(
ĥc,1(t) ≤ H, ∀t ≤ T

)
> 1− ϵ. (27)

In the threshold-based algorithm, agent-1 is scheduled and the
update is successful with a rate no less than ps,c/N when
its AoI is larger than the threshold, i.e., ĥc,1(t) > Hc. Denote
T0(t) as the last time agent-1 is scheduled and the transmission
is successful. Then ĥc,1(t) = t−T0(t) is stochastic-dominated
by a random variable ĥ′ = Hc+ ẑ where ẑ ∼ exp(ps,c) (in the
rescaled time domain) because the scheduling event happens
with a rate of N . Therefore,

Pr
(
ĥc,1(t) ≤ H

)
≥ Pr

(
ĥ′ ≤ H

)
= 1− e−ps,c(H−Hc).

(28)
Letting the right-hand side be larger than 1 − ϵ gives us
the conclusion that XN

c,t(h) is tight. Then based on the
Prokhorov’s Theorem, XN

c,t(h) is relatively tight, which means
that for any sequence XN

c,t(h), there exists a subsequence that
is convergent. Let us denote such a subsequence by XNk

c,t (h).
Consider its characteristic function,

φc(t) ≜
∫ ∞

0

ejωhXNk
c,t (h)dh. (29)

When the time changes from t to t + dt, the change in
characteristic function is

|φc(t+ dt)− φc(t)| =
∫ ∞

0

ejωh
∣∣∣XNk

c,t+dt(h)−XNk
c,t (h)

∣∣∣ dh.
≤
∫ ∞

0

∣∣∣XNk

c,t+dt(h)−XNk
c,t (h)

∣∣∣ dh. (30)

Choose an arbitrary ε > 0. Based on (27), choose H so large
that Pr

(
ĥc,1(t) > H

)
< ε

4 , and Nk > 4H
ε , then

|φc(t+ dt)− φc(t)| ≤
∫ H

0

∣∣∣XNk

c,t+dt(h)−XNk
c,t (h)

∣∣∣ dh+
ε

2

≤ 2H

Nk
+

ε

2
= ε. (31)

The last inequality is based on the fact that the jump of
XNk

c,t (h) in a small time interval is at most δx
Nk

. This concludes
the proof.

Now we know that any sequence XN
c,t(h) has a convergent

subsequence with continuous sample path. Let us see if such
a limit, i.e., f̂c,t(h), is uniquely determined. It follows from
(26) that when N is large,

∥φ∞
c (t)∥2 = ∥φ∞

c (0)∥2 +
∫ t

0

(G′
c,1 + Ḡ′

c,2)ds+M
′∞
t,c . (32)

Applying the Ito’s formula to f(φ∞
c (t)) wherein f(x) = x2

is twice continuously differentiable and φ∞
c (t) is a continuous

semimartingale, we obtain

f(φ∞
c (t)) = ∥φ∞

c (t)∥2

= f(φ∞
c (0)) +

∫ t

0

f ′(φ∞
c (s))dφ∞

c (s)

+
1

2

∫ t

0

f ′′(φ∞
c (s))d⟨M∞

s,c⟩

= ∥φ∞
c (0)∥2 +

∫ t

0

φ∞
c (s)dφ∞

c (s) + ⟨M∞
s,c⟩

= ∥φ∞
c (0)∥2 + 2

∫ t

0

φ∞
c (s)G(φ∞

c (s))ds+ ⟨M∞
s,c⟩

+2

∫ t

0

φ∞
c (s)dM∞

s,c

= ∥φ∞
c (0)∥2 + 2

∫ t

0

φ∞
c (s)(Gc,1 +Gc,2)ds+ ⟨M∞

s,c⟩

+2

∫ t

0

φ∞
c (s)dM∞

s,c

= ∥φ∞
c (0)∥2 +

∫ t

0

(G′
c,1 + Ḡ′

c,2)ds+ ⟨M∞
s,c⟩

+2

∫ t

0

φ∞
c (s)dM∞

s,c, (33)

wherein ⟨X(t)⟩ ≜ lim∥P∥→0

∑n
k=1(Xtk − Xtk−1

)2 denotes
the quadratic variation of X(t) and P ≜ supk |tk − tk−1|.
Comparing (32) and (33), and by the uniqueness of the
Doob–Meyer decomposition, we know that

⟨M∞
s,c⟩ = 0,∀t. (34)

Based on the definition,

E
[
⟨M∞

s,c⟩
]
= 0

= lim
∥P∥→0

n∑
k=1

2E∥M∞
tk,c

∥2 − 2E
[
M∞

tk,c
M∞

tk−1,c

]
= lim

∥P∥→0

n∑
k=1

2E∥M∞
tk,c

∥2 − 2E∥M∞
tk−1,c

∥2

= 2E∥M∞
tk,c

∥2. (35)

Therefore M∞
s,c is a zero-mean martingale with zero variance,

hence it is zero almost surely. Thus we obtain

φ∞
c (t) = φ∞

c (0) +

∫ t

0

(Gc,1 +Gc,2)ds. (36)

Take the inverse characteristic function transform and deriva-
tive with t on both ends, we obtain exactly the PDE in (12).
Based on the Cauchy-Lipschitz theorem, (12) has one unique
solution. Because any solution of (36) must also satisfy (12),
hence f̂c,t(h) is uniquely determined. Based on the following
corollary of the Prokhorov’s theorem, we have concluded the
proof.

Lemma 4: If µn is a tight sequence of probability measure
such that every weakly convergent subsequence µnk

has the
same limit µ, then the sequence µn converges weakly to µ.

The intuition behind (12) is clear. As the time passes, the
AoI gets larger which is denoted by the first term on the right-
hand side of the equation. When the AoI is below the threshold
of this class, the agents are never scheduled, resulting in the
bottom equation; otherwise, the agents with AoI higher than
the threshold are scheduled and flow back to zero AoI with
rate the proportional between the number of agents with this
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AoI and the total number of agents with AoI beyond their
individual thresholds.

B. Stationary Regime
In (12), the AoI distribution and evolution of the system is

characterized by a PDE. Let us first search for its solution.
Define ĝc(x, y) ≜ f̂c(x+ y, x), wherein we use the change of
variable x = h and y = t− h.

∂ĝc(x, y)

∂x
=

∂f̂c(t, h)

∂t
+

∂f̂c(t, h)

∂h
(37)

Therefore the PDE in (12) is rewritten as
∂ĝc(x, y)

∂x
=

− ps,cĝc(x, y)

1−
∑C

c=1 Ĝj(Ĥj , y)
, if x > Ĥc;

0, if 0 ≤ x ≤ Ĥc,

(38)

∀y ≤ 0,∀c, ĝc(−y, y) = f̂c,0(−y), (39)

∀y > 0,∀c, ĝc(0, y) =
ηc − Ĝc(Ĥc, y)

1−
∑C

j=1 Ĝj(Ĥj , y)
ps,c, (40)

wherein Ĝc(x, y) ≜
∫ x

0
ĝc(s, y)ds. The derivative of ĝc(s, y)

is hence shown to be only related to x and y affects the initial
conditions for various x. This helps us to derive the solution
of (12). The following theorem describes the limiting behavior
of AoI.

Theorem 2: With probability 1, when t → ∞, the solution
of (12) converges to a globally-stable equilibrium that is
irrelevant with t and f̂c,0, which reads

d̂c(h) =


ηc

1− Ĥcps,c

β+Ĥcps,c

β
ps,ce

− ps,c(h−Ĥc)

β , if h > Ĥc;

ηc
1− Ĥcps,c

β+Ĥcps,c

β
ps,c, if 0 ≤ h ≤ Ĥc,

wherein β is the unique positive solution of

ν(β) ≜ β +

C∑
c=1

ηcĤcps,c

β + Ĥcps,c
− 1 = 0, (41)

with
∑C

c=1
ηc

Ĥcps,c
> 1.

Proof: First, we will show that the system enters the stage
wherein y = t−h > 0 eventually with probability one. Denote
Ĥm = maxc{Ĥc} and pm = minc{ps,c}. Then for t > Ĥm,
every agent successfully transmits an update with a rate no
less than pm. Denote the first time agent-i transmits an update
successfully as ti,0, then ∀T > 0,

Pr
(
t̂i,0 ≤ T − Ĥm

)
≥ 1− e−pm(T−Ĥm), (42)

which approaches 1 with large T . After t̂i,0, AoI returns to
zero and we have t > h for every t > t̂i,0 afterwards.

Therefore, with probability one, the solution of (38) con-
verges to one given by the initial condition (40) with y > 0.
Solving that gives

ĝc(x, y) =

κce
− ps,c(x−Ĥc)

1−
∑C

j=1
Ĝj(Ĥj ,y) , if h > Ĥc,

κc, if 0 ≤ h ≤ Ĥc,
(43)

where κc =
ηc−Ĝc(Ĥc,y)

1−
∑C

j=1 Ĝj(Ĥj ,y)
ps,c, ∀c. Note that

Ĝc(Ĥc, y) = κcĤc,∀c, and
C∑

c=1

κc

ps,c
= 1. (44)

Denote β = 1−
∑C

j=1 Ĝj(Ĥj , y) > 0 as the total fraction of
agents with AoI larger than thresholds, then

Ĝc(Ĥc, y) =
ηcĤcps,c

β + Ĥcps,c
,∀c, and (41). (45)

Observing (41), it follows that ν(0) = 0, ν(∞) = ∞, and

ν′(β) ≜ 1−
C∑

c=1

ηcĤcps,c(
β + Ĥcps,c

)2 , ν′′(β) > 0. (46)

Hence as long as ν′(0) = 1−
∑C

c=1
ηc

Ĥcps,c
is strictly negative,

there is a unique positive solution of (41); otherwise there is
no positive solution. This concludes the proof.

The equilibrium also satisfies the traditional equation

∂f̂c(t, h)

∂t
= 0, (47)

which gives the exact same solution as in (41). It is not difficult
to check the local-stability of the solution.

Proposition 1: For every ϵ > 0, there exists δ > 0, such
that, if ∥f̂c,0(h)− d̂c(h)∥ < δ, then for every t ≥ 0, ∥f̂c,t(h)−
d̂c(h)∥ < ϵ, i.e., the equilibrium d̂c(h) is asymptotically stable
in the local sense.

Proof: Let us check the Jacobian matrix J(d̂c(h)) ∈
H × H, where H is a Hilbert space with inner product
defined as ⟨f, g⟩ =

∫
Ŝ
f(x)g(x)dx. In this case J(d̂c(h))is

a the derivative of the right-hand side of (12) with respect to
f̂c(t, h), taken on the value of d̂c(h):

J(d̂c(h)) =

 − ps,c

1−
∑C

c=1 F̂j(t, Ĥj)
, if 0 ≤ d̂c(h) < κc;

0, if d̂c(h) ≥ κc,

(48)

with the only eigenvalue being − ps,c

1−
∑C

c=1 F̂j(t,Ĥj)
κc which

is strictly negative. Therefore, we can conclude that the
equilibrium is locally asymptotically stable based on the
Hartman–Grobman Theorem [29].

V. AOI IN TIME-INVARIANT CHANNELS

Next, to compare with the time-varying channels scenario,
we first apply the fluid limit tool to analyze the AoI in
time-invariant channels and solve a well-known but open AoI
scheduling problem.

A. System Model

Consider a one-hop wireless network wherein a central node
communications with N distributed agents. The agents share
the wireless channel based on a scheduling policy denoted
by π. First assume a time-slotted status update system is
considered. Later, we will analyze it using the fluid limits
which exist in the continuous time domain. The status packet
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generation is assumed to be generate-at-will, i.e., a fresh status
for agent-n is generated whenever it is scheduled. We are
interested in average AoI. Concretely, the long time-average
AoI of the system is defined by

∆̄π ≜ lim sup
T→∞

1

TN

T∑
t=1

C∑
c=1

Nc∑
n=1

E[hn,π(t)], (49)

where T is the time horizon length, and hn,π(t) denotes the
AoI of terminal-n at the t-th time slot under policy π. The
c-th class of agents are those who transmit with a channel
reliability of ps,c ∈ (0, 1], c = 1, · · ·, C. which denotes the
successful delivery probability. In each time slot, only one
agent can transmit. Over time, the AoI increases by one every
time slot.

Such a system model has been studied extensively in the
literature [6], [8]–[10], [23]. In [6, Theorem 6], it is found
that there exist a lower bound of the average AoI, i.e.,

∆̄π ≥ N

2C2

(
C∑

c=1

1
√
ps,c

)2

≜ ∆̄LB.
2 (50)

However, as far as we know, it is still an open problem
whether this lower bound is (asymptotically) tight. On the
other hand, several Whittle’s index based solutions, as well
as Lyapunov-drift based ones which essentially gives similar
algorithms and performance, have been proposed as a heuristic
to solve the problem. These solutions exhibit near-optimal AoI
by simulations, but only very loose performance bounds can
be proved, e.g., in [6, Theorem 17], due to the non-renewal
nature of the scheduler. Note that Ref. [9] considers a different
scenario wherein the number of scheduled agents (i.e., M )
scales with the total number of agents (i.e., N ) and goes to
infinity with M/N = α fixed. The authors proved asymptotic
optimality without specific performance expressions.

B. Fluid Limits Results

Powered by the results in Section IV, we will solve this
problem. we will show that the lower bound in (50) is indeed
asymptotically tight, i.e.,

lim
N→∞

min
π

∆̄π

∆̄LB
= 1. (51)

In the meantime, we will show that a threshold-based schedul-
ing policy derived from our analysis achieves the lower bound.

Considering the scheduling policy in Algorithm 1, the
following theorem is true.

Theorem 3: Algorithm 1 achieves a long time-average AoI
of ∆̄Alg.1, and

∆̄Alg.1 =
N

2C2

(
C∑

c=1

1
√
ps,c

)2

+O(1). (52)

2A slight difference with [6] is that we assume, aligned with the system
model in this paper, there are a finite number of C classes of agents and,
without loss of generality, each class has N/C agents. In contrast, each agent
can be different in [6], i.e., C = N .

Algorithm 1: Threshold-based scheduler 1

1 Initialization: The threshold of class c (c = 1, · · ·, C)

is Hc =
N

∑C
j=1

1√
ps,j

C
√
ps,c

.
2 for t = 1 : T do
3 Randomly schedule an agent whose AoI is greater

than its corresponding threshold with equal
probabilities at every time.

Proof: We apply Theorem 1 to this application. Because
we are interested in the time-average AoI, it is sufficient
to consider the stationary regime. With (41) and notice∫ Ĥc

0
d̂c(h)dh = Ĥcκc < ηc, the average AoI of class-c is

hence

ĥc =

∫ ∞

0

d̂c(h)hdh

= κc

∫ Ĥc

0

hdh+

∫ ∞

Ĥc

κce
− ps,c(h−Ĥc)

β hdh

=
1

2
κcĤ

2
c − ηcĤc +

η2c
κc

>
η2c
2κc

, (53)

where the right-hand-side of the inequality can be approached
with Ĥ∗

c → ηc

κc
. In other words, for any ε > 0, let Ĥ∗

c = ηc−ε
κc

,

then ĥc =
η2
c+ε2

2κc
. Note that with (44), the average AoI across

all classes satisfies

ĥ ≥
C∑

c=1

η2c + ε2

2κc
=

C∑
c=1

η2c + ε2

2κc

C∑
c=1

κc

ps,c

≥ 1

2

(
C∑

c=1

√
η2c + ε2

ps,c

)2

. (54)

The last inequality is based on the Cauchy-Schwarz Inequality,
and the equality holds when κ2

c

(η2
c+ε2)ps,c

= C0, ∀c. Together
with Ĥ∗

c = ηc−ε
κc

, we solve for the following problem:

Ĥ∗ = argmin
Ĥc

ĥ, (55)

with the solution of

Ĥ∗ =

 ηc − ε√
(η2j + ε2)ps,c

C∑
j=1

√
η2j + ε2

ps,j


c=1,···,C

. (56)

Now let us check the legitimacy of the solution against the
requirement

∑C
c=1

ηc

Ĥcps,c
> 1 in Theorem 2. Indeed,

C∑
c=1

ηc

Ĥcps,c
=

∑C
c=1

ηc

ηc−ε

√
η2
c+ε2

ps,c∑C
j=1

√
η2
j+ε2

ps,j

> 1. (57)

Because ε can be arbitrarily small3 and the fluid limits bring
in an approximation error of O

(
1
N

)
, the AoI of Algorithm 1

is

∆̄∗
Alg.1 =

N

2

(
C∑

c=1

ηc√
ps,c

)2

+O(1). (58)

3In the sequel, we omit ε for brevity since it does not affect the result.



YUAN et al.: ANALYZING AGE OF INFORMATION IN MULTIACCESS ... 57

With ηc = 1/C, we obtain the thresholds in Algorithm 1 and
its average AoI, which concludes the proof.

Corollary 1: Algorithm 1 is asymptotically optimal.
Proof: Taking the limit N → ∞ with (52) and (50), the

conclusion follows immediately.
Remark 2: We would like to draw a connection of Algo-

rithm 1 and the index policies in [6]. The Whittle’s index
policy and Lyapunov drift-based max-weight policy share
the same structure. They both schedule the agent with the
maximum value of ps,ch

2
c,i(t), with a slight difference in

the linear term of hc,i(t) which is insignificant when AoI
is large. Essentially, since only relative value is important,
this is equivalent to an index of approximately √

ps,chc,i(t).
Furthermore, this is analogues to having a clock for agent-
i that is scaled by √

ps,c. In comparison, the AoI threshold
of agent-i in Algorithm 1 is 1

C
√
ps,c

∑C
j=1

1√
ps,j

, which in
fact scales with AoI by the same coefficient. After all, only
agents with AoI larger than the threshold are eligible for being
scheduled. Hence, the connection between Algorithm 1 and
index policies is very strong.

Remark 3 (Decentralized implementation): One additional
merit of Algorithm 1, compared with index policies, is that it
is convenient for decentralized protocols. Index policies need
to compare the indices of all agents which are difficult to
implement in a decentralized system setting. Fortunately, in
Algorithm 1, the central node only needs to broadcast a set
of thresholds which do not change over time, and agents can
access the channel based upon the thresholds and a contention-
based multi-access protocol such as standard carrier-sensing
multiple-access (CSMA).

VI. AOI IN TIME-VARYING CHANNELS

In this section, we will analyze the scenario wherein the
wireless channels are time-varying, which are more practical.

A. System Model
Consider a one-hop wireless network which is similar with

that in Section V, except for the following differences. The
wireless channel is modelled as a Gilbert-Elliot channel, which
is also called the burst-noise channel. At the end of each
time slot, the wireless channel is either in a good or bad
state with different transmission success probabilities, i.e., the
state of the wireless channel is time-varying. The agents with
a good wireless channel state can successfully deliver the
status packet with a probability ps,G ∈ (0, 1], whereas the
transmission would be erased while having a bad wireless
channel state, i.e., ps,B = 0. In more general terms, the channel
state transition process can be described by a Markov chain
which has two states: Good and Bad. Therefore, the agents
can transfer from one class to another over time. The transfer
probability between different channel states can be denoted by
ρc,c′ . In the continuous-time domain, it represents the transfer
rate per unit time. Moreover, as N approaches infinity, the
transition process between each class reaches stability, i.e.,

ηc
∑
c̸=c′

ρc,c′ =
∑
c̸=c′

ηc′ρc′,c. (59)

In the rescaled time domain, the rescaled transfer rate is

ρ̂c,c′ = Nρc,c′ . (60)

The transfer rate also reflects the time-varying extent of
the wireless channel. For example, in the high-speed mobile
communication scenario, it is obvious that the value of the
transfer rate is relatively large. While in the almost static com-
munication scenario such as indoor environment, the transfer
rate can be regarded as close to 0. When the transfer rate is
ρ̂c,c′ = 0, ∀c ̸= c′ and all channel states are known, and this
is the scenario considered in the Section V. Therefore, the
system model in the Section V can be regarded as a special
case of the system model in this Section.

To analyze the effects of only knowing part of the CSI
on the overall performance, assume we have partial CSI at
the beginning of each time slot. By combining the previous
conditions, the agents can be classified into two classes: ones
with good channel status and with bad channel status. In more
details, each class of agents is divided into two parts: those
with known channel states and with unknown channel states.

B. Fluid Limits Results

Taking into account the above time-varying channel condi-
tions, the PDE (12) can be rewritten as:

∂f̂c(t, h)

∂t
=

− ∂f̂c(t, h)

∂h
+ êc, if 0 ≤ h ≤ Ĥc,

−∂f̂c(t, h)

∂h
+ êc −

ps,cf̂c(t, h)

1−
∑C

c=1 F̂j(t, Ĥj)
, if h > Ĥc.

(61)

êc =
∑
c̸=c′

ρ̂c′,cf̂c′(t, h)−
∑
c̸=c′

ρ̂c,c′ f̂c′(t, h), (62)

∀h ≥ 0,∀c, f̂c(0, h) = f̂c,0, (63)

∀t ≥ 0,∀c, f̂c(t, 0) =
ηc − F̂c(t, Ĥc)

1−
∑C

j=1 F̂j(t, Ĥj)
ps,c. (64)

The initial conditions are the same as (14). Compared with
(12), there is an additional term of êc which greatly increases
the complexity of the PDE. In (62), the first term stems
the proportion of agents transferred from c-th class to other
classes, and the second term stems the proportion of agents
transferred from other classes to c-th class.

Powered by the results in Section IV-B, when time goes to
infinity, the above PDE also exists a stationary regime, i.e.,
an equilibrium point of the PDE which is locally stable and
f̂c(t, h) satisfies (47). In this regard, the PDE can be simplified
to an ODE. In the following, we will discuss the detailed PDEs
in general scenarios. For extreme scenarios, such as the PDE
where all channel states are unknown or all channel states are
known, it can be derived from the general scenario, that is, a
simplified special form.

1) Partially known channel states:
In the general scenario, i.e., partial channel states are known,

the agents are divided into three classes: good, bad and
unknown, which are respectively indexed by c = 1, · · ·, 3. It is
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worth noting that in this case, all packets delivered by agents
with bad channel state are always erased. Therefore, for a
class of agents with bad channel state, the optimal threshold
should be Ĥ2 = ∞. The ratio of the number of agents with
known channel states to the total number of agents is denoted
by γ ∈ (0, 1). Note that, agents of unknown channel states,
however, are still either with good or bad channels physically,
therefore the actual ODE is as follows:

df̂1(h)

dh
= ρ̂2,1f̂2(h)− ρ̂1,2f̂1(h),

df̂2(h)

dh
= ρ̂1,2f̂1(h)− ρ̂2,1f̂2(h),

if 0 ≤ h ≤ Ĥ1,



df̂1(h)

dh
= ρ̂2,1f̂2(h)− ρ̂1,2f̂1(h)

− γ
ps,Gf̂1(h)

1−
∑4

j=1 Mj

,

df̂2(h)

dh
= ρ̂1,2f̂1(h)− ρ̂2,1f̂2(h),

if Ĥ1 < h ≤ Ĥ3,



df̂1(h)

dh
= ρ̂2,1f̂2(h)− ρ̂1,2f̂1(h)

− ps,Gf̂1(h)

1−
∑4

j=1 Mj

,

df̂2(h)

dh
= ρ̂1,2f̂1(h)− ρ̂2,1f̂2(h)

− (1− γ)ps,Bf̂2(h)

1−
∑4

j=1 Mj

,

if h > Ĥ3,


f̂1(0) =

η1 −M1 −M2

1−
∑4

j=1 Mj

ps,G,

f̂2(0) =
η2 −M3 −M4

1−
∑4

j=1 Mj

ps,B,

(65)

where M1 = γF̂1(Ĥ1), M2 = (1 − γ)F̂1(Ĥ3), M3 = (1 −
γ)F̂2(Ĥ3), and M4 = γF̂2(Ĥ2) = γη2.

Solving this ODE, we obtain the solution of (65) at 0 ≤
h ≤ Ĥ1

f̂1(h) =
ρ̂2,1 (κ1 + κ2) + e−hρ̂′

(ρ̂1,2κ1 − ρ̂2,1κ2)

ρ̂′
,

f̂2(h) =
ρ̂1,2 (κ1 + κ2) + e−hρ̂′

(ρ̂2,1κ2 − ρ̂1,2κ1)

ρ̂′
,

(66)

where ρ̂′ = (ρ̂1,2 + ρ̂2,1), and
κ1 =

η1 −M1 −M2

1−
∑4

j=1 Mj

ps,G,

κ2 =
η2 −M3 −M4

1−
∑4

j=1 Mj

ps,B.

(67)

Note with (59) and (60), as N → ∞, we have ρ̂c,c′ → ∞ and
ρ̂2,1

ρ̂1,2+ρ̂2,1
= η1,

ρ̂1,2

ρ̂1,2+ρ̂2,1
= η2, then for (66), we have

f̂1(h) =
ρ̂2,1 (κ1 + κ2)

ρ̂1,2 + ρ̂2,1
= η1 (κ1 + κ2) ,

f̂2(h) =
ρ̂1,2 (κ1 + κ2)

ρ̂1,2 + ρ̂2,1
= η2 (κ1 + κ2) .

(68)

Algorithm 2: Threshold-based scheduler 1

1 Initialization: The threshold of class c (c = 1, · · ·, 3)
is H1 = N

ps,G
, H2 = ∞, H3 = ∞.

2 for t = 1 : T do
3 Randomly schedule an agent whose AoI is greater

than its corresponding threshold with equal
probabilities at every time.

Next, we obtain the solution of (65) at Ĥ1 < h ≤ Ĥ2

f̂1(h) =
e(−

Υ1
2 (h−Ĥ1))(−f̂1(Ĥ1)(Υ1 − 2ρ̂2,1) + 2f̂1(Ĥ1)ρ̂2,1)

2Q

e(−
Υ2
2 (h−Ĥ1))(f̂1(Ĥ1)(Υ2 − 2ρ̂2,1)− 2f̂1(Ĥ1)ρ̂2,1)

2Q
,

f̂2(h) =
e(−

Υ1
2 (h−Ĥ1))(f̂2(Ĥ1)(Υ2 − 2ρ̂2,1) + 2f̂1(Ĥ1)ρ̂1,2)

2Q

e(−
Υ2
2 (h−Ĥ1))(−f̂2(Ĥ1)(Υ1 − 2ρ̂2,1)− 2f̂1(Ĥ1)ρ̂1,2)

2Q
,

(69)

where

υ =
γps,G

1−
∑4

j=1 Mj

,

Q =
√
υ(υ + 2ρ̂1,2 − 2ρ̂2,1) + (ρ̂1,2 + ρ̂2,1)2,

Υ1 = υ + ρ̂1,2 + ρ̂2,1 −Q,

Υ2 = υ + ρ̂1,2 + ρ̂2,1 +Q,

f̂1(Ĥ1) = η1 (κ1 + κ2) ,

f̂2(Ĥ1) = η2 (κ1 + κ2) . (70)

Given γ, as N → ∞, we have Υ2 → ∞, and limN→∞ Q =
ρ̂1,2 + ρ̂2,1, then for (69), we have

f̂1(h) = η1(f̂1(Ĥ1) + f̂2(Ĥ1))e
−

γps,G

1−
∑4

j=1
Mj

(h−Ĥ1)

2 ,

f̂2(h) = η2(f̂1(Ĥ1) + f̂2(Ĥ1))e
−

γps,G

1−
∑4

j=1
Mj

(h−Ĥ1)

2 .

(71)

Similarly, as N → ∞, we obtain the solution of (65) at
h > Ĥ3

f̂1(h) = η1(f̂1(Ĥ3) + f̂2(Ĥ3))e
−

ps,G

1−
∑4

j=1
Mj

(h−Ĥ3)

2 ,

f̂2(h) = η2(f̂1(Ĥ3) + f̂2(Ĥ3))e
−

ps,G

1−
∑4

j=1
Mj

(h−Ĥ3)

2 .

(72)

Considering the aforementioned conditions and the schedul-
ing strategy in Algorithm 2, the following theorem is true.

Theorem 4: In a partially observable time-varying channel
environment, i.e., γ ∈ (0, 1), Algorithm 1 achieves a long
time-average AoI of ∆̄Alg.1, and

∆̄Alg.1 =
N

2ps,G
+O(1). (73)
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Proof: According to
∫ Ĥ1

0

f̂1(h)dh = η1 (κ1 + κ2) Ĥ1 < η1∫ Ĥ1

0

f̂2(h)dh = η2 (κ1 + κ2) Ĥ1 < η2

(74)

it gives Ĥ1 < 1
κ1+κ2

. There exists an arbitrary ε > 0, let
Ĥ∗

1 = 1−ε
κ1+κ2

, then (1 −
∑4

j=1 Mj) → 0, thus f̂1(h) → 0,
f̂2(h) → 0 at h > Ĥ1. Therefore, the average AoI of each
class is

ĥ1 =

∫ H1

0

η1 (κ1 + κ2)h dh =
η1(1− ε)2

2 (κ1 + κ2)
,

ĥ2 =

∫ H1

0

η2 (κ1 + κ2)h dh =
η2(1− ε)2

2 (κ1 + κ2)
,

(75)

and the average AoI across all classes satisfies

ĥ ≥ η1(1− ε)2

2 (κ1 + κ2)
+

η2(1− ε)2

2 (κ1 + κ2)
=

(1− ε)2

2 (κ1 + κ2)
. (76)

With κ1

ps,G
+ κ2

ps,B
= 1, κ1 ≥ 0, κ2 ≥ 0, then

ĥ ≥ (1− ε)2

2 (κ1 + κ2)
=

(1− ε)2

2
[(

1− ps,B

ps,G

)
κ1 + ps,B

]
=

(1− ε)2

2
[(

1− ps,G

ps,B

)
κ2 + ps,G

] . (77)

It is obvious that ĥ ≥ 0. Since ps,B = 0, to minimize ĥ, then
κ1 should be maximized or κ2 should be minimized, i.e.,{

κ1 = ps,G,

κ2 = 0.
(78)

According to (67), the above equation holds when Ĥ3 = ∞,
then

Ĥ∗
1 =

1− ε

ps,G
. (79)

Because ε can be arbitrarily small and the fluid limits bring in
an approximation error of O (1/N), the AoI of Algorithm 1
is

∆̄∗
Alg.1 =

N

2ps,G
+O(1) (80)

2) Known all channel states:
In the case where all channel states are known, i.e., γ = 1,

there are only two classes of agents: Good and Bad, and the
ODE is

df̂1(h)

dh
= ρ̂2,1f̂2(h)− ρ̂1,2f̂1(h),

df̂2(h)

dh
= ρ̂1,2f̂1(h)− ρ̂2,1f̂2(h),

if 0 ≤ h ≤ Ĥ1,



df̂1(h)

dh
= ρ̂2,1f̂2(h)− ρ̂1,2f̂1(h)

− ps,Gf̂1(h)

1−
∑2

j=1 Mj

,

df̂2(h)

dh
= ρ̂1,2f̂1(h)− ρ̂2,1f̂2(h),

if h > Ĥ1,

Algorithm 3: Threshold-based scheduler 1

1 Initialization: The threshold of class c (c = 1, · · ·, 3)
is H1 = N

ps,G
, H2 = ∞, H3 = ∞.

2 for t = 1 : T do
3 Randomly schedule an agent whose AoI is greater

than its corresponding threshold with equal
probabilities at every time.


f̂1(0) =

η1 −M1

1−
∑2

j=1 Mj

ps,G,

f̂2(0) =
η2 −M2

1−
∑2

j=1 Mj

ps,B,

(81)

where M1 = F̂1(Ĥ1), and M2 = F̂2(Ĥ2) = η2.
Considering the aforementioned conditions and the schedul-

ing strategy in Algorithm 3, the following theorem is true.
Theorem 5: In the fully observable time-varying channel

environment, i.e., γ = 1, Algorithm 3 achieves a long time-
average AoI of ∆̄Alg.3, and

∆̄Alg.3 =
N

2ps,G
+O(1). (82)

.
Proof: The proof procedure is similar to the case where

partial channel states are known, and is simpler since κ2 = 0.
For the sake of brevity, the specific proof procedure is omitted.

3) Unknown all channel states:
In the case where all channel states are unknown, i.e., γ = 0,

there are only one classes of agents: Unknown, and the ODE
is 

df̂1(h)

dh
= ρ̂2,1f̂2(h)− ρ̂1,2f̂1(h),

df̂2(h)

dh
= ρ̂1,2f̂1(h)− ρ̂2,1f̂2(h),

if 0 ≤ h ≤ Ĥ;



df̂1(h)

dh
= ρ̂2,1f̂2(h)− ρ̂1,2f̂1(h)

− ps,Gf̂1(h)

1−
∑2

j=1 Mj

,

df̂2(h)

dh
= ρ̂1,2f̂1(h)− ρ̂2,1f̂2(h)

− ps,Bf̂2(h)

1−
∑2

j=1 Mj

,

if h > Ĥ;


f̂1(0) =

η1 −M1

1−
∑2

j=1 Mj

ps,G,

f̂2(0) =
η2 −M2

1−
∑2

j=1 Mj

ps,B,

(83)

where M1 = F̂1(Ĥ), and M2 = F̂2(Ĥ).
Considering the aforementioned conditions and the schedul-

ing strategy in Algorithm 4, the following theorem is true.
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Fig. 2. Empirical and theoretical CDF of the rescaled AoI with number of agents of 10 (top row), 100 (middle row) and 1000 (bottom row). From left to
right, the four columns represent CDFs at time 100, 1000, 10000 and 50000 (not rescaled).
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Fig. 3. Average AoI comparisons obtained by Algorithm 1, Whittle’s index [6]
and fluid limits in Theorem 3.

Algorithm 4: Threshold-based scheduler 1

1 Initialization: The threshold of class c (c = 1, · · ·, 3)
is H1 = ∞, H2 = ∞, H3 = N

η1ps,G
.

2 for t = 1 : T do
3 Randomly schedule an agent whose AoI is greater

than its corresponding threshold with equal
probabilities at every time.

Theorem 6: In the blind time-varying channel environment,
i.e., γ = 0, Algorithm 4 achieves a long time-average AoI of

∆̄Alg.1, and

∆̄Alg.1 =
N

2η1ps,G
+O(1). (84)

Proof: In this case, the other partial proof procedures are
similar to the case where partial channel states are known,
but (77) is different, and the specific process is as follows.
According to (74),



κ1

ps,G
=

η1 −M1

1−
∑2

j=1 Mj

=
η1 − F̂1(Ĥ)

1−
∑2

j=1 Mj

=
η1 − η1 (κ1 + κ2) Ĥ

1−
∑2

j=1 Mj

=
η1

[
1− (κ1 + κ2) Ĥ

]
1−

∑2
j=1 Mj

,

κ2

ps,B
=

η2 −M2

1−
∑2

j=1 Mj

=
η2 − F̂2(Ĥ)

1−
∑2

j=1 Mj

=
η2 − η2 (κ1 + κ2) Ĥ

1−
∑2

j=1 Mj

=
η2

[
1− (κ1 + κ2) Ĥ

]
1−

∑2
j=1 Mj

.

(85)

Since
κ1

ps,G

κ2

ps,B

=
η1
η2

, (86)
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Fig. 4. Theoretical PDF of the rescaled AoI when partial channel states are
known.

and κ1

ps,G
+ κ2

ps,B
= 1, κ1 ≥ 0, κ2 ≥ 0, then
κ1 =

η1
η1 + η2

ps,G = η1ps,G,

κ2 =
η2

η1 + η2
ps,B = η2ps,B.

(87)

Therefore, (77) can be rewritten as

ĥ ≥ (1− ε)2

2 (κ1 + κ2)
=

(1− ε)2

2 (η1ps,G + η2ps,B)
. (88)

With ps,B = 0, the optimal threshold is

Ĥ∗ =
1− ε

κ1 + κ2
=

1− ε

η1ps,G + η2ps,B
=

1− ε

η1ps,G
. (89)

Because ε can be arbitrarily small and the fluid limits bring
in an approximation error of O

(
1
N

)
, the AoI of Algorithm 1

is

∆̄Alg.1 =
N

2η1ps,G
+O(1). (90)

Combined with the previous analysis, it is evident that the
following inference holds.

Remark 4: In a partially observable time-varying channel
scenario, by applying Algorithm 2, the optimal AoI perfor-
mance is almost the same as when all channel states are known
as long as a fraction of the channel states are known. That is,
when γ > 0, the optimal threshold and the optimal long-time
average AoI are independent of γ. This is intuitive since we
only schedule agents with good channel states, and for those
with bad or unknown channel states, it is better to wait until
the channel state is known to be good.

VII. SIMULATIONS

In this section, we provide the simulation results corre-
sponding to the analysis in Section V and Section VI. The
simulation results are discussed in two parts: AoI in time-
invariant channels and AoI in time-varying channels, respec-
tively.

A. AoI in Time-Invariant Channels

About the AoI in time-invariant channels, computer simu-
lations are conducted. Two classes of agents (equal number of
agents in each class) are tested, with ps,G = 0.9 and ps,B = 0.2
respectively. In Fig. 2, the convergence of empirical CDF of
rescaled AoI to the limiting equilibrium of (41) based on
applying Algorithm 1 is shown. The initial AoI distribution
is generated based on a Gaussian distribution with mean of
N/2 and variance N . The simulation is ran in slotted time
domain and lasts for 106 time slots. Each slot corresponds to a
scheduling event in CTMC. It is observed that when N grows,
the match between empirical and theoretical CDF results by
fluid limits is evident. Note that it takes longer to converge
with larger N because our rescaled AoI requires the time is
accelerated by a factor of N , which can be seen by comparing
the (2, 2) and (3, 2) figures. In Fig. 3, we also compare the
time-average AoI performance of Algorithm 1, the Whittle’s
index approach [6] and the theoretical fluid limits (without the
O(1) term and thus is also the AoI lower bound in (50)). It
is found that the three are very close to each other. Note that
Theorem 3 gives the performance of Algorithm 1 within an
error term of O(N), but the error can still be dependent on
N with lower order than 1, e.g., O(

√
N)—this explains the

widened gap when N grows.

B. AoI in Time-Varying Channels

About the AoI in time-varying channels, computer simula-
tions are conducted in two scenarios: known partial channel
states and unknown all channel states. To facilitate the anal-
ysis, in both cases, considering the same number of agents
for both Good and Bad classes, we show the theoretical PDF
of the rescaled AoI and a comparison of the empirical and
theoretical CDFs of the rescaled AoI.

1) Known partial channel states:
In Fig. 4, to better represent the variation details of AoI, we

show the theoretical PDF of rescaled AoI when N = 2000,
ρc,c′ = 0.1, γ = 0.1, ps,G = 1, Ĥ1 = 0.5, Ĥ2 = 1.5. It
is shown that the PDFs of the two classes of agents have
different initial values at h = 0, but as h increases, a transfer
process occurs between different classes of agents due to the
characteristics of the time-varying channel, and the transfer
rate tends to infinity in the rescaled time domain. Therefore,
the PDFs of the two classes of agents rapidly converge to
steady state. Starting from h = Ĥ1, the PDFs of both classes
of agents start to decrease almost simultaneously because the
class of agents with good channel state is scheduled. Starting
from h = Ĥ2, the PDFs of both classes of agents start to
decrease again because the class of agents with unknown
channel state is scheduled.

In Fig. 5, we present the empirical and theoretical CDFs
of the rescaled AoI at the optimal threshold when N = 2000,
ρc,c′ = 0.1, γ = 0.1, ps,G = 0.5. As can be seen from the
figure, the empirical CDF of rescaled AoI gradually converges
to equilibrium and is in perfect consistency with the theoretical
CDF.

2) Unknown all channel states:
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Fig. 5. Empirical and theoretical CDF of the rescaled AoI when partial channel states are known, with the top and low rows denoting the classes of Good
and Bad, respectively. From left to right, the four columns represent CDFs at time 100, 1000, 10000 and 50000 (not rescaled).
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Fig. 6. Empirical and theoretical CDF of the rescaled AoI when all channel states are unknown, with the top and low rows denoting the classes of Good and
Bad, respectively. From left to right, the four columns represent CDFs at time 100, 1000, 10000 and 50000 (not rescaled).

In Fig. 6, we present the empirical and theoretical CDFs
of the rescaled AoI at the optimal threshold when N = 2000,
ρc,c′ = 0.1, γ = 0, ps,G = 1. As can be seen from the figure,
the empirical CDF of rescaled AoI gradually converges to
equilibrium and is in perfect consistency with the theoretical
CDF.

C. Average AoI Comparison

About the AoI in channels with different time-varying
degrees, i.e., γ , computer simulations are conducted. Two
classes of agents (equal number of agents in each class) are
tested, with ps,G = 1 and ps,B = 0, respectively. Since there
have been no previous studies on the Whittle’s index policy
under partially observable time-varying channels, we assume
that the probability of successful transmission of the unknown
channel is ps,Unknown =

η1

η1+η2
ps,G + η2

η1+η2
ps,B. Consequently,

we show the AoI performance under [16, Theorem 5] with

γ = 1 and the AoI performance under [6, Theorem 17] with
γ = 0.1, γ = 0. In Fig. 7, we compare the time-average AoI
performance of Fluid Limits, the Whittle’s index approach [6],
[16], both with γ = 1, γ = 0.1, γ = 0 and the theoretical fluid
limits with ps,G = 1, η1 = 1 (without the O(1) term and thus
is also the AoI lower bound in (50)). It is found that the fluid
limits with γ ̸= 0 are very close to the Lower Bound with all
channel states are good and outperforms the Whittle’s index
policy at any γ, which consistent with our previous theoretical
analysis results.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, the system asymptotic behavior with a large
number of agents, i.e., the fluid limits, is developed for AoI
occupancy measure in wireless multiaccess networks. It is
shown that, under a simple threshold-based policy, the system
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Fig. 7. Average AoI comparisons obtained by Algorithm 1, Whittle’s index [6]
and Lower Bound with different γ.

limiting behavior converges to a fluid limit within an error
inversely proportional to the number of agents. Moreover,
the fluid limit has a provable asymptotically local stable
equilibrium that can be used to solve for the stationary AoI
distribution.

Leveraging this framework, we solve an AoI scheduling
problem with heterogeneous i.i.d. user channel conditions. A
well-known existing lower bound, yet with unknown tightness,
is shown to be asymptotically tight. The achievability is
proved by optimizing the thresholds in our proposed threshold-
based policy. The resultant scheduling policy is asymptotically
optimal with explicitly derived thresholds, and is much easier
to decentralize compared with the index-based policy. Users
in the proposed policy only need to know its fixed individual
threshold, whereas users have to compare their indices every
time by the index policy.

Furthermore, we show that the AoI with partially observ-
able time-varying channels can be solved by the fluid limit
framework. We analyzed the optimal long-time average AoI
with different proportions of observable channel states and
show that the optimal AoI performance can be achieved as
long as only a small fraction of the channel states are known.
Simulations reveal that our analysis matches the reality closely,
and that the convergence to the fluid limit is evident with a
moderate number of users.

Essentially, we believe a large scope of AoI scheduling
problems can be solved leveraging this powerful analysis tool.
The crux is the convergence of AoI occupancy measure to the
fluid limit. As long as this is upheld, which is often the case in
AoI scheduling, the rest follows conveniently. Generalization
to other applications is our ongoing work.
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