JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024 131

IBN@Cloud: An Intent-based Cloud and Overlay
Network Orchestration System
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Abstract—This paper presents an intent-based network-
ing (IBN) system for the orchestration of OpenStack-based clouds
and overlay networks between multiple clouds. Clouds need
to communicate with other clouds for various reasons such as
reducing latency and overcoming single points of failure. An
overlay network provides connectivity between multiple Clouds
for communication. Moreover, there can be several paths of
communication between a source and a destination cloud in
the overlay network. A machine learning model can be used to
proactively select the best path for efficient network performance.
Communication between the source and destination can then
be established over the selected path. Communication in such
type of a scenario requires complex networking configurations.
IBN provides a closed-loop and Intelligent system for cloud
to cloud communication. To this end, IBN abstracts complex
networking and cloud configurations by receiving an intent from
a user, translating the intent, generating complex configurations
for the intent, and deploying the configurations, thereby assuring
the intent. Therefore, the IBN that is presented here has three
major features: (1) It can deploy an OpenStack cloud at a target
machine, (2) it can deploy GENEVE tunnels between different
clouds that form an overlay network, and (3) it can then leverage
the advantages of machine learning to find the best path for
communication between any two clouds. As machine learning
is an essential component of the intelligent IBN system, two
linear and three non-linear models were tested. RNN, LSTM,
and GRU models were employed for non-linear modeling. Linear
regression and SVR models were employed for linear modeling.
Overall all the non-linear models outperformed the linear model
with an 81% R? score, exhibiting similar performance. Linear
models also showed similar performance but with lower accuracy.
The testbed contains an overlay network of 11 GENEVE tunnels
between 7 OpenStack-based clouds deployed in Malaysia, Korea,
Pakistan, and Cambodia at TEIN.

Index Terms—GENEVE, IBN, linear models, non-linear mod-
els, OpenStack, overlay network, TEIN.

I. INTRODUCTION

NTERNET engineering task force (IETF) defines an intent-
based network (IBN) as “a network that can be managed
using intent” [1]], [2]. An intent is “a set of operational goals
(that a network should meet) and outcomes (that a network is
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supposed to deliver), defined in a declarative manner without
specifying how to achieve or implement them” [[1]], [2].

IBN has the ability to continuously monitor the network
and react to changing network conditions, such as path se-
lection in an overlay network for communication between
clouds. Cloud computing offers various services [3]]. More
and more individuals and organizations are turning to Multi-
cloud solutions as a single cloud is often unable to meet their
diverse needs [4]]. Clouds may need to share their resources
with other clouds for a variety of reasons, such as minimizing
single points of failure, improving reliability, and ensuring
high availability [5]].

Tunneling [6] can provide the mechanism of communication
between clouds as tunneling enables access to restricted net-
works and establishes an isolated and secure communication
channel [7]]. In networking, when one node does not have
direct access to another node, tunnels can be established at
a demilitarized zone (DMZ) between the two nodes to enable
accessibility. In some cases, tunnels are set up solely to
facilitate communication over an isolated and secure chan-
nel, even if the source and destination nodes have direct
network accessibility [[7]. To enable communication between
OpenStack-based clouds, a GENEVE tunnel is implemented,
and all GENEVE tunnels between the clouds collectively form
an overlay network. The topology of this network can be
displayed and managed through an SDN-Controller such as
RYU.

Network modeling plays a critical role in the development
of efficient solutions for network operation and optimization,
especially with regard to the emerging field of self-driving
networks [8]], [9]. This model determines the most optimal path
for network traffic between a given source and destination. For
this purpose monitoring modules are deployed for collecting
data of the overlay network topology. This data is used to train
a machine learning model. Once the model has identified the
best path, the SDN-Controller adds flow rules to route network
traffic along that path.

To this end, in this paper, we present IBN that deploys
OpenStack-based clouds at different locations and deploys
GENEVE tunnels between the OpeStack-based clouds. To-
gether all the tunnels form an overlay network. IBN receives
an intent for a service request from a source to a destination
cloud. IBN uses the ML model to proactively select a path
that has minimum round-trip time (RTT). IBN then gives
input to SDN-controller for communicating over the selected
path for the given source and destination in the intent. IBN,
therefore, acts as an intent-based closed-loop and Intelligent
way of resource sharing through GENEVE tunneling between
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multiple OpenStack-based clouds.

The testbed contains an IBN application, 7 OpenStack-based
clouds, and an overlay network with 11 GENEVE tunnels de-
ployed by IBN. The test-bed also contains a monitoring system
for data collection that is used for machine learning model
training and inference. Moreover, the test-bed also contains
an RYU SDN-Controller that ensures communication over
the path provided by IBN. The OpenStack-based clouds and
overlay network are deployed in four partner countries, namely
Pakistan, Cambodia, Malaysia, and South Korea at trans-
Eurasia information network (TEIN) [10]]. TEIN is a network
between the Asia Pacific and Europe for research and educa-
tion communities. TEIN is an EU co-funded Asia@Connect
project and comprises 21 Asian partners.

Section II contains related work. Section III describes the
architecture of the system. Section IV contains explanation
of the test bed design and all its components. Section V
presents machine learning. Section VI contains the results and
discussion. Section VII concludes the paper.

II. RELATED WORK

In an IBN, a user provides a networking requirement
in an abstract manner that does not contain any technical
configurations. An abstract networking requirement is called
an intent. The IBN application itself decides the necessary
configurations for satisfying an intent. The IBN application
executes commands on the underlying network for deploying
the decided configurations. This process is called intent as-
surance. An intent can be any abstract network requirement,
e.g., “deploy tunnel from node A to node B.” It is then the
job of the IBN application to translate the intent into network
configurations based on some policy [11].

A study proposed network slicing in 5G networks using
generative adversarial neural network (GAN) and IBN [12].
Another study presented a generic intent-based networking
platform for E2E network slice orchestration and lifecycle
management using IBN and graph neural network (GNN) [13].
Zeydan, Engin, and Yekta Turk, in a study, provide a compre-
hensive survey on IBN [14].

IBN can facilitate cloud-to-cloud communication that is
required for various reasons. One of the reasons is to avoid a
single point of failure. In addition to the risk of a single point
of failure, a cloud that is located far from a client can result
in high latency when accessing the cloud. Cloud, therefore,
needs to share its resources with another cloud near the client’s
location [[15]].

In a multi-cloud scenario, application developers face the
challenge of managing a distributed application across multiple
clouds. This includes ensuring that the application remains
operational and performs optimally, while also considering
the potential migration of services from one cloud to an-
other. To address this challenge, developers need to have
a comprehensive understanding of the cloud infrastructure,
network topology, and application architecture. They also need
to consider factors such as load balancing, data replication,
and disaster recovery to ensure that the application remains
available and performs well in a multi-cloud environment [[16].

clouds, therefore, need an overlay network in the form of
tunnels for communication and sharing of resources. [7].

Tunneling, therefore, provides the communication mecha-
nism between two or more clouds. There can be different types
of tunneling, such as HTTP tunneling [[17], GRE tunneling
[18], VXLAN [19] tunneling, and GENEVE tunneling [20].
If we examine the details of VXLAN we will see that it
was introduced as a MAC-in-IP within an IP/UDP transport.
While this feature is advantageous for bridging it is not
important for routing purposes and could be utilized for better
payload byte usage. Additionally, MAC to IP bindings requires
signalling which calls for information exchange in the control
plane or flood-based learning. The GENEVE [20] tunneling
protocol has a flexible option header format that allows for
the definition of the length, fields, and content depending on
the instruction set provided by the tunnel endpoint (TEP) node
that performs the encapsulation. Although some of the fields in
GENEVE tunneling are simple and static, such as bridging or
routing, other fields and formats used for telemetry or security
are highly variable, for hop-by-hop independence . Since 2020
GENEVE has been therefore adopted as a standard tunnel
protocol [21].

Once the overlay network is deployed between clouds using
tunnels there can be several paths of communication between
a source and destination. The best path can be selected
proactively using Machine Learning. The goal of network
traffic prediction is to forecast future network traffic based
on historical data. This proactive approach is valuable for net-
work management and planning purposes. Network prediction
has become increasingly significant and is receiving greater
attention, particularly for medium to large network providers
[22]. Enhancing the accuracy of network prediction enables
network providers to optimize resources more effectively and
deliver higher service quality to their customers [23]]. The
family of recurrent neural network (RNN) approaches spe-
cializes in modeling time series data, with the objective of
predicting future time series based on past information, even
when there are long time lags of unknown durations. RNN
encompasses various network architectures, including simple
RNN, long short-term memory (LSTM), and gated recurrent
unit (GRU) [24]]. RNN is an advanced model derived from the
traditional feed-forward neural network (FFN). It incorporates
a self-recurrent loop that enables the flow of information from
one time step to another, making it particularly effective for
tasks involving time series and sequence modeling. LSTM,
a type of RNN, was specifically designed to address the
challenge of vanishing and exploding gradients encountered
by traditional RNNs. GRU, on the other hand, was introduced
as an alternative to LSTM with the goal of reducing compu-
tational complexity while achieving similar performance [24].
According to [25[], it was argued that a nonlinear approach
based on traffic prediction is the most suitable. Recurrent
neural networks (RNNs) are recognized as highly effective
models that exhibit strong accuracy in forecasting time series
data [26], [27].

In summary, clouds offers various services [3|]. This study
presents IBN for deploying clouds to host services. These
offered services have some essential requirements such as
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high availability, reliability, performance, replication, and data
consistency [4]. These essential requirements need communi-
cation between Multiple clouds [15]], [16], [28]. Communica-
tion between Mutiple clouds can be provided by L2 tunnels
(6], (7], [17]-[21].The IBN can then deploy tunnels between
clouds. Collectively these tunnels form an overlay network.
Communication on the overlay network can take several paths.
IBN leverages the advantages of machine learning models to
forecast RTT latency for each tunnel in the overlay network

(81, 9], [221-[27).

III. SYSTEM ARCHITECTURE

Fig. [I] shows the architecture of the system. IBN acts
as the central component by receiving input from all other
components and decides the output. IBN deploys clouds and
overlay network links such as Layer 2 (L2) GENEVE tunnels
between multiple clouds. Together all the tunnels form an
overlay network. A total of 7 clouds and 11 GENEVE tunnels
are deployed in our testbed using IBN. The overlay network
is used by clouds for cloud-to-cloud communication. There
can be several paths between a source cloud to a destination
cloud. For optimal network performance, communication must
be done proactively by selecting the best path. The best path
has the minimum forecasted RTT latency in comparison to
other paths between the same source and destination clouds.
For this purpose monitoring tools collect network data such as
the RTT latency of each link. The obtained data is then used
by a machine learning model for training. Once the model
is trained it can forecast the RTT latency of each link. For

a given source and destination in intent, the IBN gets the
forecasted data from the machine learning model. The IBN
feeds the forecasted data to the Dijkstra algorithm as weights.
The Dijkstra algorithm returns the shortest path based on these
weights to the IBN. Thereby, the Dijkstra algorithm finds the
best path. This path has the minimum RTT latency forecasted.
IBN stores the path for a given intent. IBN then directs SDN-
Controller to ensure communication over the best path. SDN-
Controller then deploys flow rules for communication over the
best path.

Once the best path is decided the IP addresses of the nodes
and port numbers of tunnels in the decided path are used
to formulate flow rules. A flow rule decides to forward a
packet to a specific port based on the information of source
and destination addresses in the packet in a virtual switch.
A bridge of an Openstack OVS acts similarly to a virtual
switch and contains ports. A GENEVE tunnel is a link and is
connected to the bridge by a port. A bridge can be connected
to multiple GENEVE tunnels by different ports. An SDN-
Controller adds the decided flow rules on the bridge of each
OVS to enable communication over the best path. Interaction
between different components and obtaining the best path is
done by an individually executing component of IBN called
off-platform application (OPA). Section IV explains in detail
the experimental setup and working of components.

IV. TESTBED DESIGN

IBN is deployed at a centralized location where it has a
global view of all system components as well as the overlay
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Fig. 2. Testbed design of IBN orchestrating clouds and overlay network between clouds at TEIN.

TABLE I
LIST OF CLOUD NODES DEPLOYED AT TEIN.

S. No. Site Site Name Country
1 INU Jeju National University Korea

2 UoM University of Malaya Malaysia
3 PERN Pakistan Education & Research Network Pakistan
4 KOREN-NOC | Korea Research & Education Network NOC Korea

5 ITC Institute of Technology Cambodia Cambodia
6 SUIT Sarhad University of Information Technology Pakistan
7 NUST National University of Sciences & Technology | Pakistan

network. IBN is used to deploy 7 OpenStack clouds in
four partner countries, namely Pakistan, Cambodia, Malaysia,
and South Korea at TEIN, with 11 GENEVE tunnels, as shown
in Fig. 2} In Pakistan we deployed OpenStack cloud nodes
at three sites namely the Sarhad University of Science and
Information Technology (SUIT), the National University of
Science and Technology (NUST), and Pakistan Education and
Research Network (PERN). In Korea, we deployed OpenStack
cloud nodes at two sites namely Korea Research and Education
Network (KOREN) — Network Operations Center (NOC), and
Network Convergence Lab Jeju National University (NCL-
JNU). In Cambodia and Malaysia, we deployed one cloud
node at the Institute of Technology Cambodia (ITC) and the
other at the University of Malaya (UoM). Table [] shows
a list of all sites and their Institute name in each country.
Monitoring tools are also deployed at the centralized location

so that it has a global view of the overlay network. Monitoring
tools such as PerfSonar, PerfSonar-Collector, Prometheus-push
gateway, Prometheus, and Grafana are deployed for network
performance monitoring. Fig. [2] shows the GENEVE tunnel
between all sites also deployed by IBN. PerfSonar is then
deployed at each site to test the performance of the link. For
this purpose, PerfSonar Collector is developed that executes
any number of tests and exports the results to Prometheus
a time series database (TSDB) through several intermediate
modules. Monitoring Data is visualized by deploying Grafana.
The obtained data is used for training of ML model for
finding the best path. RYU SDN-Controller is also deployed
at the same centralized location where IBN and monitoring
tools are deployed. SDN-Controller can visualize the topology
and deploy flows for a path based on input from IBN for
given intent. Fig. 2] shows the experimental setup of IBN
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orchestrating clouds and overlay network between clouds. This
section describes each of these components in detail.

A. Intent-based Networking (IBN)

The IBN application contains complete system information
and has a global view of the current system status. The IBN
application has a Catalog that contains information on nodes,
Links between nodes, and services at each node. IBN is used
for adding new services. The IBN also shows all tunnels and
tunneling details, such as bridges, ports, and remote Ips. The
IBN system has a simplified front-end web-based interface for
users to request the automated orchestration of services. IBN
uses the high-level service context/business goals provided by
the user as intents and translates them into low-level system
configurations. IBN is used to deploy cloud nodes at sites as
shown in Fig. [3] and Algorithm [I] IBN is also used to deploy
an overlay network such as GENEVE tunnels between cloud
nodes as shown in Fig.[dand Algorithm 2] In addition, the IBN
application will ensure the provision of a requested service to
a user. A user from any node from any partner country can
request service at any other node at any other partner country.
IBN will learn the best path for this request. Initially, the intent
is pending but when the decided path is implemented and the
service is acquired from source to destination nodes, the intent
is “Assured” as shown in Fig. [ and Algorithm [3] The IBN
shows all pending and assured intents. In simple words, user
intent is a requirement for which certain complex network
configurations are needed. This section further elaborates on
IBN users and the mechanism of intent translation.

1) IBN roles: IBN consists of three distinct user types:
“IBN-Manager”, “Site-Manager”, and “Service-Provider”. An
IBN-Manager has a global view of the system. IBN-Manager
can create users such as Site-Manager or Service-Provider.
Users can then interact with IBN and carry out their activities.

2) Intent translation: IBN is used for network automation
that can simplify the configuration process and reduce the
risk of human error. By using intent-based commands, a user
can specify the desired outcome without needing to know

135

Algorithm 1 Deploy cloud node

Inputs:

- IPs: IP Address of the physical Host where the cloud
needs to be deployed.

- Username: Username of the physical Host where the
cloud needs to be deployed.

- Password: Password of the physical Host where the
cloud needs to be deployed
Outputs:

- OpenStack cloud deployed at the physical host of IP
address.
Step 1: Add host credentials

Use server-side script such as PHP for adding node
name [P Address, username and password to the IBN
database of the Host system where a cloud node needs to
be deployed.
Step 2: Get host credentials

Use server-side script such as PHP to get node name,
IP address, username and password from the IBN database
of the host system where a cloud node needs to be deployed.
Step 3: Create file CloudDeploy.sh

Use file handling of a server-side script such as PHP
to create a file “CloudDeploy.sh”. Write Linux commands
in the file that:

o Access the host by SSH using IP, username, and
password.

o Deploy Microstack-based OpenStack cloud.

o Start a control node.
Step 4:Execute file CloudDeploy.sh

o Execute the “CloudDeploy.sh”.

o Cloud is deployed and a control node of the cloud
is started by accessing the host system.

the specific details of the network configuration. The IBN
can then automatically generate the necessary configuration
commands to achieve the desired outcome. For example, the
IBN-Manager can use IBN to deploy a tunnel, a Site-Manager
can use IBN to deploy a cloud node at his site, or a Service-
Provider can submit a request in the form of intent to acquire
a service from another node. IBN generates and executes
configurations for each of these intents.

A Site-Manager creates a site in IBN and deploys a cloud
node at that site using IBN as shown in Fig.[3]and Algorithm[}
For this purpose, a Site-Manager first adds the credentials of
the host on which the cloud node needs to be deployed. The
Site-Manager then selects the cloud node to deploy it at the
site. IBN extracts the credentials of the host on which the
cloud node needs to be deployed. IBN creates a bash file
with the name “CloudDeploy.sh”. IBN then adds commands
in the “CloudDeploy.sh” file that are related to accessing
the host by SSH using host credentials. Further, IBN adds
commands in the “CloudDeploy.sh” file for deploying cloud
node and starting a Control node. IBN then executes the file
“CloudDeploy.sh”. Executing the file gets access to the host
system by SSH and deploys cloud and starts a Control node.
A Site-Manager can also manage his site using IBN such as
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Algorithm 2 Deploy tunnel

Inputs:

- TEP-IPs: IP addresses of both tunneling endpoints.

- TEP-usernames: Usernames of the both tunneling end
points.

- TEP-passwords: Passwords of the both tunneling end
points.
Outputs:

- GENEVE tunnel deployed between two Openstack
clouds.
Step 1: Get host credentials

Use server-side script such as PHP to get IP Addresses,
usernames and passwords of the both TEPs from the IBN
database where a tunnel node needs to be deployed.
Step 2: Create file TunnelDeploy.sh

Use file handling of a server-side script such as PHP
to create a file “TunnelDeploy.sh”. Write Linux commands
in the file that:

0 Access the hostl (TEP1) by SSH using IP, username,
and password.

o Deploy GENEVE tunnel to the other TEP cloud and
exit.

o Access the host2 (TEP2) by SSH using IP, username,
and password.

o Deploy GENEVE tunnel to the first TEP cloud and
exit.
Step 3: Execute file TunnelDeploy.sh

o Execute the TunnelDeploy.sh

o Deploy the tunnel by accessing both the TEPs.

launching Instances. There can be more than one site in a
Country, such as Korea having two sites, i.e., one at NCLab-
JNU and the other at KOREN-NOC-Seoul. There are a total of
7 cloud nodes in the project, and for each cloud node system,
there is a corresponding Linux OS user account i.e., the host
system account.

Algorithm 3 Auto path calculation and implementation

Inputs:

- Source-node-ID: The ID of the source node in intent.

- Destination-node-ID: The ID of the destination node
in intent.

- Destination-instance-ID: The ID of the destination
instance to which data or files will be transfered.

- Quality of service (QoS) parameter: The attribute
of the requested service e.g., for 720p or HD for a video
service

- Data: Current network and node performance data
which is input to ML model.

Outputs:

- Optimal path: nodes and edges in a path.

- Flow rules for optimal path: SDN implementing flow
rules for communication over optimal path.

Step 1:Submit service request

o Service-provider requests a service by provid-
ing a service name, QoS parameter, source-node-ID and
destination-node-ID.

Step 2:Get inputs

o OPA gets current network performance data such as
RTT of each link from monitoring tools.

o OPA gets source-node-ID and destination-node-ID
from a pending intent
Step 3:Obtain link prediction

o The current RTT of each link is given as input to the
ML model.

o Obtain predicted RTT values for each link.

Step 4:Obtain path

o The predicted RTT values are given as input to the
Dijkstra along with a source node and a destination node.

o Obtain source to destination best path in the form of
nodes and edges.

Step 5:Calculate E2E path for intent

o Get destination-instance-ID from intent.

o Decide source-instance-ID based on QoS parameter
in intent.

o Calculate e2e path from source instance on source
node to destination instance on destination node.

Step 6:SDN implementing optimal path

o OPA provides the E2E path to the SDN controller.

o The E2E Flow rules are calculated for the best path.

o The flow rules are deployed on OVSs of each node.

o Communication is established over the best Path for
a given intent and resultant path is stored in IBN.

o Status of the intent is updated from pending to
“assured”

IBN manager can then deploy tunnels between cloud nodes
that were deployed by Site-Managers. As shown in Fig. 4] and
Algorithm 2] two cloud nodes are selected by IBN-Manager to
deploy a tunnel between them using IBN. Each cloud node is
a TEP. The host credentials of each TEP are extracted from the
IBN. IBN creates a bash file with the name “TunnelDeploy.sh”.
IBN adds commands in the “TunnelDeploy.sh” that are related
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to accessing the first cloud node by SSH using host credentials.
IBN then adds commands in the “TunnelDeploy.sh” that are
related to deploying the tunnel from the first cloud node to the
second cloud node and exit. Since tunnels are uni-directional
and for bi-directional communication the tunnel needs to be
deployed from both directions. Therefore, IBN adds com-
mands in the “TunnelDeploy.sh” that are related to accessing
the second cloud node by SSH using host credentials. Finally,
IBN adds commands in the “TunnelDeploy.sh” that are related
to deploying the tunnel from the second cloud node to the first
cloud node and exit. IBN then executes the file. Executing the
file gets access to both cloud nodes and deploys the tunnel.

A Service-Provider hosts services at Instances of a cloud
site that is owned by a Site-Manager. For this purpose, a
Service-Provider uses the IBN to request a Site-Manager for
the provision of resources. Service-Provider can request a
service from another cloud node to his cloud node, thereby
submitting an intent. While posting an intent, the Service-
Provider specifies the service-name, QoS parameter, source
cloud node, target cloud node, and Instance that acquires a
service. Initially, when a Service-Provider submits an intent,
it is in a pending state.

Following this, an OPA gets the current network perfor-
mance data such as RTT from the monitoring tools for each

link. The OPA also gets the pending intent. The OPA obtains
the predicted RTT values from the machine learning model
for each link in the overlay network based on the current
data. OPA then uses the predicted RTT values as weights with
the Dijkstra algorithm. For the given source and destination
in the intent, the Dijkstra algorithm returns the shortest path
based on the weights. Since the weights given as input to the
Dijkstra algorithm were the predicted RTT values, the shortest
path returned by the Dijkstra algorithm represents the best path
with a minimum predicted RTT. The path returned by Dijkstra
is a node-to-node path, where each node represents a cloud
node. The end-to-end (E2E) path from a source Instance on a
cloud node to a destination Instance on another cloud node is
decided by OPA from the intent. The destination Instance in
which the Service-Provider wants to acquire a service is given
in the intent. The OPA decides the source Instance based on
the QoS parameter given in the intent. The Instance on the
Source cloud node that hosts a service with the QoS desired
by the Service-Provider is decided as the source Instance.
Once the E2E path is calculated the OPA provides the path
to the SDN Controller. The E2E flow rules are calculated for
the best path. A flow rule contains information about the path
of communication that is based on the information of source
and destination addresses in the packets. The flow rules are



138 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

&

Instance
ethd

Instance

e

tap

OpenStack

OpenStack

patch-provnet-*-
to-br-int.

br-int
to-
br-ex
br-ex
|
br-int

GENEVE tunnel

patch-provnet-
*-to-breint

provnet-*

patch-br-int-
provnet-
patch-br-int-to-

enpls0

L3 Network Connectivity

Fig. 6. GENEVE tunneling between OpenStack clouds .

Ryu Topology Viewer

Fig. 7. Overlay network topology between OpenStack cloud OVSs at RYU
topology viewer.

deployed on each OVS of each cloud node. Communication is
established over the best path for a given intent. The resultant
path is also stored in IBN and the status of the intent is
updated to “Assured”. The complete process of calculating and
deploying the best path of communication for a given intent
of a service request is given by Fig. [5] and Algorithm [3]

B. An Overlay Network between Openstack-based Clouds at
TEIN

1) OpenStack-based clouds: OpenStack clouds are de-
ployed using microstack [31]. Instances are launched using a
custom Ubuntu image because the default image Cirros cannot
install any package and is merely used for testing. Each of
these clouds serves as a Control as well as a compute node,
i.e., single node cloud deployment.

2) GENEVE tunnel at OpenStack OVS: As depicted in
Fig. [ [30], every Instance is equipped with an Ethernet
interface (e.g., eth0), which facilitates connectivity to the
Instance. An integration bridge, br-int, is present in the Open-
Stack Compute node to connect the Compute node with the
Control node. To provide external connectivity via the physical
Ethernet interface enpsO1 of the host machine, the OpenStack
Control node utilizes an external bridge called br-ex [32].
As we have deployed a single-node cloud that acts as both
the Control and Compute node, both the integration bridge,

br-int, and external bridge, br-ex, are present on the same
node. Each cloud Instance establishes a connection with br-
int through tap-ports, which implies that br-int is equipped
with a tap port for every Instance. In addition to tap-ports a
patch-br-int-to-provnet-* port of bridge br-int connects to port
patch-provnet-*-to-br-int of bridge br-ex, thereby connecting
the two bridges. To enable communication between Instances
of two separate clouds, a Geneve tunnel is deployed on
bridge br-ex As depicted in Fig. [f] there are two single-node
OpenStack clouds, each of which is equipped with bridges
br-int and br-ex. From Fig. [f] it is evident that the tunnel
is deployed on bridge br-ex. In a single-node cloud scenario,
deploying the tunnel on either bridge br-ex or bridge br-int
will not make any significant difference. This is because the
single node serves as both Control and compute nodes, and
both of the bridges are in the same node. However, in a
multi-node cloud scenario, there is a significant difference
between deploying the tunnel on bridge br-ex and bridge br-
int. The Control node has bridge br-ex, whereas each compute
node has its bridge br-int. Therefore, deploying the tunnel
on bridge br-ex will enable communication between Instances
from all compute nodes, while deploying the tunnel on bridge
br-int will only facilitate communication between Instances
within the specific compute node. L2 tunnels such as VXLAN
or GENEVE are unidirectional. This means for establishing
bidirectional communication; the tunnel must be deployed
from both directions. The supported tunnel type can be found
in the ML2 plugin document of a cloud. Kernel 3.18 or
greater and OVS version 2.4 or greater of microstack-based
OpenStack cloud support GENEVE tunnel but do not support
VXLAN tunnel [33]. For a tunnel to be established between
two clouds, both sides must support and use the same type of
tunnel. If different types are used, the tunnel may be deployed
without error, but Instances from one cloud will not be able
to access instances from the other cloud.

3) SDN-Controller: Communication between a source and
a destination cloud can take several paths. An SDN controller
such as RYU connected to each OVS of the cloud can
control traffic over a selected path. The chosen path is provided
by the ML model. Fig. [7] shows the topology viewer of RYU
SDN-Controller between 7 nodes and 11 edges. This topology
was deployed at TEIN.

C. Dataset Generation by Monitoring Network Performance

Network Performance Monitoring involves the gathering
of data metrics such as speed, bitrate, congestion window
(Cnwnds), jitter, re-transmissions (Retrans), delay, and RTT
for each tunnel in the overlay network. PerfSonar [35] is
a commonly used tool for network performance testing. To
execute PerfSonar tests between a source and destination, a
custom-coded PerfSonarCollector is employed. For testing,
iperf3udp, nuttcp, and owping tests were conducted because
these tests cover maximum network performance metrics.
From the iperf3udp test, we collected metrics such as bitrate
and jitter. From a nuttcp test speed, Cnwnds, Retrans, and RTT
are collected. From an owping test, delay metric is collected.
To perform the testing, three separate PerfSonarCollectors
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TABLE 1T
DATASET DESCRIPTION.

Sample | Timestamp Link1-RTT (ms) | Link2-RTT (ms) Link10-RTT (ms) | Link11-RTT (ms)
1 1634758561 93 182 98 98
2 1634758571 94 181 97 97

10893 163486749 92 180 98 98

were developed and named udp-PerfSonarCollector, nuttcp-
PerfSonarCollector, and owping-PerfSonarCollector.

Each of these collectors was executed in parallel with its
respective test. After executing the tests, each of the three
PerfSonarCollectors saves its output to a separate CSV file.
Specifically, the udp-PerfSonarCollector saves its output to
iperf3udp.csv, the nuttcp-PerfSonarCollector saves its output
to nuttcp.csv, and the owping-PerfSonarCollector saves its out-
put to owping.csv. Whenever a new record is added to each of
the CSV files, it is tailed with the IP address and a port number
of the source of the test. This data is sent to Prometheus push
gateway [36] by PySpark from the IP and port number.
It must be noted that three other PySpark components execute
for the three different PerfSonar tests, iperf3udp, nuttcp, and
owping. Running PySpark in multithreading is a good way to
handle multiple tasks simultaneously. Each thread is respon-
sible for collecting monitoring data of a specific source and

destination pair of a link, for all three tests (iperf3udp, nuttcp,
and owping) using their respective PerfSonarCollectors. This
ensures that all data is collected at the same time stamp
for comparison purposes. Once the data is collected, each
thread sends the data to the Prometheus push gateway. The
Prometheus push gateway then pushes the data to Prometheus.
As a result, the network performance data of each source and
destination of every link is received at the same time stamp.
Fig. [§] illustrates the network performance monitoring data
obtained at Prometheus at the same time stamp. The data
obtained at Prometheus has metrics such as speed, bitrate,
Cnwnds, jitter, Retrans, delay, and RTT. All the features are
obtained at the same time stamp at an interval of 10 seconds.
At this point, it is important to note that we need all features
at the same timestamp to compare them. For example, at a
particular time stamp t, we require traffic metrics of all 11
links for comparison. Data is fetched from Prometheus using
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Fig. 9. Linear regression model performance.

Python API client [38]]. Table [[T shows the dataset obtained by
the Python API client from Prometheus for machine learning.
Prometheus stores every record with a UNIX time stamp.
Table [lI| shows the number of samples, and UNIX timestamp
of each record followed by 11 columns of RTT for each link.
Machine learning models are trained using the RTT latency
metric only because a metric is needed that can have a negative
impact on the performance of communication. This data is
then used to train machine learning models for time series
forecasting of RTT latency for each link. The dataset obtained
from monitoring tools has 10893 records. The dataset is then
split into 70% for training an ML model and 30% for testing.

V. MACHINE LEARNING

When the predicted RTT is given input to the Dijkstra [39]
algorithm as weights, the Dijkstra algorithm finds the shortest
path with minimum weights. Dijkstra’s algorithm guarantees
to find the shortest path in a weighted graph with non-negative
edge weights. It maintains a priority queue of nodes based on
their tentative distances from the source node. It iteratively
selects the node with the smallest tentative distance, relaxes
its neighbors, and updates their distances if a shorter path
is found. For machine learning non-linear models such as
RNN, LSTM, and GRU were used as well as linear models
such as SVM and LR were used. Overall non-linear models
performed better than linear models. This section presents the
performance of each model.

A. Linear Regression

Linear regression [40] is a statistical method used to model
the relationship between a dependent variable and one inde-
pendent variable. It is a linear approach represented by the
main equation: N

y=bo+ b1 7. )

In linear regression, the dependent variable is represented
by y, and the independent variable is represented by 7 .
The intercept of the regression line is denoted as b0, and

the vector of slope coefficients is represented as 71. The
objective of this algorithm is to determine the curve that
provides the best fit to the given data, accurately describing the
relationship between the dependent and independent variables.
The algorithm achieves this by considering all possible trend
lines through the data and calculating the squared differences
between the observed values (y) and the predicted values (). It
stores these squared differences (y — g)2 for each trend line
and selects the line that minimizes the sum of these squared
differences, . (y; — 7;)%. In other words, it chooses the
line of best fit that minimizes the overall distance between the
actual data points and the points predicted by the line.

Overall linear regression showed an R? score of 0.56, a
mean absolute error of 0.13, and a mean square error of 0.13.
Fig. Pa] shows the training MSE and training MAE of the
linear regression model. Fig. [Ob] shows a scatter plot for the
linear regression model predicting RTT for 11 links in the
topology. Fig. [0 shows that most of the data in the scatter
plot is scattered. This means that the values predicted are far
from the actual data represented by a straight line.

B. Support Vector Machine

The support vector machines (SVM) method, initially intro-
duced by Vapnik, was originally designed for solving pattern
recognition problems. Subsequently, Vapnik extended the ap-
plication of SVM to address function fitting problems in 1998,
leading to the development of the support vector regression
(SVR) method [41]].

It is assumed that a set of data G = {(z;,d;)}, for all i
€ {l,---,N} x_i € R" is a n dimension input vector, d; €
R! is a corresponding target output, and N expresses the total
number of pattern records. The linear regression estimating
function can be expressed as [41]:

y= f(@) wp(z) + b 2)

Overall SVR showed an R? score of 0.59, a mean absolute
error of 0.28, and a mean square error of 0.13. Fig. [T0a] shows
the training MSE and training MAE of the SVR model. Fig.
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[TOB] shows a scatter plot for the SVR model predicting RTT
for 11 links in the topology. Fig. [I0b] shows that most of the
data in the scatter plot is scattered. This means that the values
predicted are far from the actual data represented by a straight
line.

C. Recurrent Neural Network

The Recurrent Neural Network (RNN) model shares simi-
larities with the basic FFNN (Feedforward Neural Network)
model, but there are key distinctions between them. The most
fundamental difference is that RNN allows outputs from layers
to cycle back into the network. This architecture grants the
RNN the ability to incorporate dependencies among the data,
a factor that traditional FFNN cannot capture. In the RNN
model, given an input sequence x = (x1,- -, ), it iterates
through the following equations from t = 1 to T, computing
the hidden vector sequence h = (hq,---, hy) and the output
vector sequence y = (Y1, -, Yr):

he = f(Werze + Whnheer + bn), 3)
Yy = Whyhe + by. 4

RNN uses weight matrices WW,; between layers and employs
the backpropagation through time (BPTT) algorithm for gra-
dient computation during training [27].

Fig. [ITa] shows the training and validation loss versus the
training and validation R? score of the RNN model. Overall
RNN shows an R2 score of 0.81. R? score shows the accuracy
of the RNN model. A decreasing training loss and increasing
training R? indicates that the model is improving its ability
to fit the training data, while a decreasing validation loss
and increasing validation R? score suggests that the model
is generalizing well to unseen data. We can see in Fig. [ITa]
that a decrease in training and validation loss directly causes
an increase in training and validation of R? score i.e. the
accuracy of the model. The convergence or stabilization of
all four curves indicates that the model is learning effectively
and not overfitting. Fig. [[Tb| shows a scatter plot for the RNN
model predicting RTT for 11 links in the topology. Fig. [ITb|
shows that most of the values predicted are close to the actual
data that is represented by the straight line.
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Fig. 13. GRU model performance.

D. Long Short-Term Memory

Training standard RNNs can encounter the vanishing gradi-
ent problem [27]], where long-term dependencies become diffi-
cult to weight. To address this issue, two notable architectures,
LSTM and GRU, have been proposed. LSTM incorporates a
memory unit, consisting of a memory cell ¢, and an output
h¢, modifying the RNN model [27].

hi = o; tanh (¢;) (5)

Fig. [I2a] shows the training and validation loss versus
the training and validation R? score of the LSTM model.
Overall LSTM shows an R? score of 0.81. R? score shows
the accuracy of the LSTM model. A decreasing training loss
and increasing training R? score indicates that the model is
improving its ability to fit the training data, while a decreasing
validation loss and increasing validation R? score suggests that
the model is generalizing well to unseen data. We can see in
Fig.[124] that a decrease in training and validation loss directly
causes an increase in training and validation of R? score i.e.
the accuracy of the model. The convergence or stabilization of

all four curves indicates that the model is learning effectively
and not overfitting. Fig. [I2bshows a scatter plot for the LSTM
model predicting RTT for 11 links in the topology. Fig. @
shows that most of the values predicted are close to the actual
data that is represented by the straight line.

E. Gated Recurrent Unit

Another variant of the RNN is the GRU [27], which has
quite a similar architecture to an LSTM. The GRU also has
gated units that control the flow of information inside the unit;
however, unlike the LSTM, the GRU does not have separate
memory cells. The activation h; at time t of this unit is a
linear combination of the activation at the previous time step
h;—1 and the candidate activation h; [27]:

ht = (1 — Zt) ht_l—f— Zt’}vlt. (6)

Fig. [I34] shows the training and validation loss versus the
training and validation R? score of the GRU model. Overall
GRU shows an R? score of 0.81 R? score shows the accuracy
of the GRU model. A decreasing training loss and increasing
training R? score indicates that the model is improving its
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Fig. 14. Actual RTT vs LR, SVR, RNN, LSTM, and GRU predicted RTT for 11 links in the overlay network.

ability to fit the training data, while a decreasing validation
loss and increasing validation R? score suggests that the model
is generalizing well to unseen data. We can see in Fig. [[33]
that a decrease in training and validation loss directly causes
an increase in training and validation of R? score i.e., the
accuracy of the model. The convergence or stabilization of
all four curves indicates that the model is learning effectively
and not overfitting. Fig. [T3b] shows a scatter plot for the GRU
model predicting RTT for 11 links in the topology. Fig. [I3b]
shows that most of the values predicted are close to the actual
data that is represented by the straight line.

VI. RESULTS AND DISCUSSION

The performance of two linear models and three non-
linear models was evaluated for predicting RTT in a network
topology consisting of 11 links. For the linear models linear
regression and SVR are used. For the non-linear models RNN,
LSTM, and GRU models are used. Overall all non-linear
models performed better than linear models. All non-linear
models performed similarly but GRU showed even better

mse. Linear models also performed similarly but showed poor
performance in comparison to the non-linear models.

The scatter plot in Figs. [0b]and [TOb|for LR and SVR reveals
a larger spread of predicted values away from the actual data
line, suggesting less accurate predictions. Both linear models
showed 0.13 MSE. Linear regression showed 0.13 MAE which
is less than 0.28 MAE of SVR, but on the other hand SVR
shows a 0.59 R? score which is better than 0.56 R? score of
the linear regression model. The graph of training MSE and
MAE in Figs. Da] and [I04] for the Linear regression and SVR
models exhibits a zig-zag pattern, indicating an unstable and
inconsistent learning process. This behavior suggests that the
model’s performance may be affected by model instability, or
inappropriate learning rate, making it less reliable for making
accurate predictions.

In contrast, the non-linear models demonstrated superior
performance. RNN, LSTM, and GRU achieved an R? score
of 0.81 and a MAE of 0.32. However, RNN, LSTM, and
GRU showed 0.20, 0.19, and 0.13 MSE. This shows that GRU
performed well in comparison to other non-linear models from
the mse perspective.

Overall these results indicate that the non-linear models
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TABLE III
MODEL PERFORMANCE COMPARISON
S. No. Model R? Score | MAE | MSE
1 Linear regression 0.56 0.13 0.13
2 SVR 0.59 0.28 0.13
3 RNN 0.81 0.32 0.20
4 LSTM 0.81 0.32 0.19
5 GRU 0.81 0.32 0.13

effectively capture the underlying patterns in the data, re-
sulting in more accurate predictions. The plot for training
and validation loss versus training and validation R? score
in Figs. [TTa] [12a] and T34 for non-linear models demonstrates
successful convergence and model generalization. The scatter
plot in Figs. [12b] and [13D] for non-linear models reveals
less spread of predicted values and is close to the actual
data line, suggesting more accurate predictions. Fig. [I5] and
Table [Tl shows model performance comparison. Fig. [T3] and
Table summarize the R2? score, MSE, and MAE for all
models, further highlighting the superior performance of non-
linear models. These findings emphasize the effectiveness of
non-linear models in capturing the complex relationships and
patterns within the RTT data. Additionally, Fig. [I4] presents in-
dividual graphs comparing the actual RTT with RNN, LSTM,
GRU, LR, and SVR predicted RTT for each of the 11 links.
It is evident that the non-linear models predictions closely
align with the actual RTT, indicating its ability to capture the
nuances of link behavior. In contrast, linear models predictions
exhibit greater deviations from the actual data, suggesting
limitations in capturing the underlying dynamics accurately.
Overall, these results confirm that non-linear models outper-
forms linear models in predicting RTT in the network topology
under consideration. The higher R? score and lower errors of
the non-linear models demonstrate its superior capability to
model complex relationships and make accurate predictions.

VII. CONCLUSION

A multi-cloud infrastructure offers benefits like increased
resources, availability, and reliability but also brings some

challenges, such as complex configurations for the deploy-
ment of clouds, an overlay network, and the best paths for
communication between clouds. This paper presents IBN as
an intent-based, intelligent, and closed-loop system to address
these challenges. The IBN receives a networking requirement
in the form of an intent from a user in an abstract and simple
way. The IBN translates the intent into complex networking
configurations. The IBN presents an intent translation mecha-
nism for three types of intents i.e., cloud deployment, overlay
network deployment in which each link is a GENEVE tunnel,
and path selection in the overlay network for communication
between clouds. For the path selection, a machine learning
model predicts the RTT of each link in the overlay network.
A monitoring system was developed to obtain data for the
training and testing of machine learning models. In the context
of a multi-cloud infrastructure, the node-to-node path, where
each node represents a cloud node, can be determined using
Dijkstra’s algorithm with predicted RTT values as the weights.
The E2E path is determined by selecting the source and des-
tination instances based on the instance and QoS parameters
specified in the intent. The E2E path is implemented by the
SDN Controller in the form of flow rules. The process of path
selection and implementation is handled by an individually
executing component of IBN called an OPA.

For the validation of the proposed system, the presented
IBN is used to deploy 7 OpenStack-based clouds at TEIN in
Pakistan, Korea, Malaysia, and Cambodia. IBN is also used
to deploy an overlay network of 11 Geneve tunnels between
the clouds. IBN then utilizes machine learning to select the
best path. For this purpose, 2 linear and 3 non-linear models
are trained and tested, namely linear regression, SVR, RNN,
LSTM, and GRU. The performance of all the linear models
was similar and poor. Results show that non-linear models
perform better than linear models. The non-linear models
perform almost similarly, with a 0.81 R2 score and 0.32 MAE.
However, the RNN, LSTM, and GRU models show 0.20, 0.19,
and 0.13 MSE. The IBN therefore utilizes a non-linear model
such as GRU for predicting the RTT of all the 11 links in
the overlay network. The predicted values are given as input
to the Dijkstra algorithm as weights. The Dijkstra algorithm
returns the shortest path based on the weights. The shortest
path returned by the Dijkstra algorithm is the best path with
minimum RTT.

In our future work, we aim to test other machine learning
models such as GNN. We also aim to extend the functionality
of IBN to cloud native functions (CNFs) and utilize machine
learning for VNF and CNF relocation.
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