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Efficient Detectors for Uplink Massive MIMO Systems
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Abstract—Massive multiple-input multiple-output (MIMO) is
one of the essential technologies in beyond fifth generation (B5G)
communication systems due to its impact in attaining high power
efficiency and spectrum efficiency. The design of low-complexity
detectors for massive MIMO continues to attract significant
research and industry attention due to the critical need to
find the right balance between performance and computational
complexity, especially with a large number of antennas at both
the transmitting and receiving sides. It has been noticed in several
recent studies that appropriate initialization of iterative data
detection techniques plays a crucial role in both the performance
and the computational complexity. In this article, we propose
three efficient initialization methods that achieve a favorable
balance between performance and complexity. Instead of using
the conventional diagonal matrix, we employ the scaled identity
matrix, the stair matrix, and the band matrix with the first
iteration of the Newton method to initialize the accelerated
overrelaxation (AOR), the successive overrelaxation (SOR), the
Gauss-Seidel (GS), the Jacobi (JA), and the Richardson (RI)
based detectors. The scaling factor depends on the minimum and
maximum eigenvalues of the equalization matrix. The proposed
detectors are tested with different massive MIMO configurations,
different modulation schemes (QPSK, 16QAM and 64QAM), and
perfect and imperfect channel state information (CSI). Using
simulations, we show that the proposed detectors achieve a
significant performance gain compared to the minimum mean-
squared error (MMSE) based detector, the conventional linear
massive MIMO detectors, and other existing detectors, at a
remarkable complexity reduction.

Index Terms—Acceleration overrelaxation, B5G, Gauss-Seidel,
Jacobi, massive MIMO, Newton iteration, Richardson, successive
overrelaxation.

I. INTRODUCTION

AN ever-expanding growth in the demand for reliable,
high data rate, ubiquitous, and high capacity wireless

communication is driving the development of technologies and
solutions to support beyond-fifth-generation (B5G) wireless
systems [1]. These systems are expected to provide increasing
mobile users with reliable, ultra-high data rates and ultra-
low latency connections to support a plethora of envisioned
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applications such as immersive reality and remote health
care. They are also expected to effectively handle highly
dense, highly heterogeneous networks that will emerge from
massive device deployment in industrial, smart city, and smart
home settings. Importantly, B5G systems are required to meet
these demands while maintaining high energy and spectral
efficiencies [2].

Massive multiple-input multiple-output (MIMO) sys-
tems [3] have been proposed as an effective solution to address
many of the above challenges. By utilizing hundreds/thousands
of antenna units at the base station (BS), these systems can
host multiple users simultaneously and frequency resources,
which can significantly enhance system efficiency [4]. The
multitude of antennas creates a highly rich scattering environ-
ment, providing a considerable enhancement in the diversity
and multiplexing gains compared to small-scale MIMO sys-
tems. The resulting systems can combine high reliability, high
data rates, high energy efficiency, and low noise sensitivity [5].

While bringing about tangible improvements in system
capacity, reliability, and energy and spectral efficiency, the
transition to large-scale MIMO systems also brings forth a host
of new challenges that must be addressed [6], [7]. The large
number of antennas and radio frequency (RF) chains means
more complex/costly hardware. Moreover, at the signal pro-
cessing level, the large number of antennas and users directly
impacts the dimensionality of the signal, which can drastically
increase the computational complexity of basic receiver tasks
such as channel estimation and data detection. Both tasks must
be performed accurately and efficiently to bring to fruition the
promised gains of massive MIMO systems. In the uplink, it
is critical for the massive MIMO BS to accurately detect the
simultaneous transmissions of a large number of users without
incurring a substantial delay that would affect the system’s
latency. Hence, uplink massive MIMO detection has emerged
as a critical research problem, attracting substantial research
efforts [8], [9].

A. Related Work

Optimal detection in the form of maximum-likelihood (ML)
detection, while providing the highest accuracy, requires a
high-dimensional exhaustive search, making it intractable for
practical applications [10]. Hence, efforts have focused on
developing low-complexity methods that provide the best
tradeoff between performance and complexity. In classical
(small-scale) MIMO, linear methods have emerged among the
most promising solutions. Classical linear methods (minimum
mean-squared error (MMSE) and zero-forcing (ZF) based
detectors) apply an equalization matrix to the received signal
to minimize the inter-link interference before performing de-
tection on the equalized signal [11]. While MMSE has become
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the mainstay of linear detection methods for classical MIMO
systems, it requires a large-dimensional matrix inversion,
which is computationally costly and can potentially compro-
mise the real-time implementation of the system [12]. More
generally, the computation of the equalization matrix in linear
methods requires the inversion of the Gram (Gramian) matrix.
This inversion becomes more computationally demanding as
the system size increases. Moreover, the system can be ill-
conditioned if the Gramian matrix is singular [9].

Thus, Research has focused on developing approximate
linear methods that approach the MMSE performance at
significantly lower computational complexity [13]. The work
in [13] provides a detailed overview of these approximate
linear methods and the related performance-complexity trade-
offs of each method. One proposed approach has been to
employ approximate matrix inversion methods to approximate
the inverse of the Gramian matrix iteratively. Methods that
exemplify this approach include the Neumann series (NS)
method [14], [15] and the Newton iteration (NI) method [16],
[17]. In [17], a hybrid method was proposed whereby a
small number of NI iterations (two iterations) were applied to
obtain the initial estimate for the RI method. The motivation
was the high complexity of high-order NI. The result was
a significant enhancement in performance and a reduction
of the computational complexity by an order of magnitude.
A drawback of this type of method, however, is that they
generally involve multiple matrix multiplications per iteration,
which has non-trivial computational complexity and makes
them less hardware-friendly. In addition, this type of methods
suffer from a severe performance loss when the number of
transmitting users approaches the number of BS antennas.

Another proposed approach that has also received atten-
tion is solving the matrix inversion as a system of linear
equations. These methods start with an initial estimate, and
after a number of iterations yield an output that represents
the solution to the linear system. Methods that exemplify
this approach include the Richardson (RI) method [18], the
Jacobi (JA) method [19], the successive over-relaxation (SOR)
method [20], the conjugate gradient (CG) [21], the Gauss-
Siedel (GS) [22] and the accelerated over-relaxation (AOR)
method [23]. One drawback of the above methods is that
they may require a large number of iterations to converge,
especially if users’ numbers and BS antennas’ numbers are
close [24]. It has been observed in multiple studies that the
related performance, convergence rate, and complexity of these
methods significantly depend on their initial solution [25].

It is noteworthy that the equalization matrix is diagonally
dominant [26]. Hence, most detectors in existing literature
mainly exploit the diagonal matrix in their design. However, in
some cases, the diagonal matrix may not be used to converge.
In [27], it is shown that the convergence rate can remarkably
improve by using the stair matrix in massive MIMO detectors.
In [28], a massive MIMO detector based on an iterative method
using the stair matrix is proposed. It was demonstrated that
the detectors based on the stair and diagonal matrices have
the same computational complexity level. In [25], a stair
matrix was employed to compute the initial solution for the
NI, GS, SOR, and RI methods. This resulted in improved

convergence, enhanced performance, and lower complexity.
In [29], the banded matrix accelerates the GS, JA, and SOR’s
convergence rate. The banded matrix is exploited in [30] to
reduce the computational complexity of the likelihood ascent
search (LAS) based detector. One drawback of the above
methods is their performance deterioration in an imperfect CSI
environment. They also suffer from a significant performance
loss when the number of transmitting antennas approaches the
number of receiving antennas.

B. Contribution and Organization
Inspired by the promising results achieved in [17], [25],

and [28], in this paper, we aim to improve the initializa-
tion stage due to its significant impact on the detectors’
performance-complexity profile. In the MMSE, the equaliza-
tion matrix is diagonally dominant. Hence, the majority of
existing detectors have utilized diagonal matrix. However, it
has been observed that, in some situations, the methods that
use the diagonal matrix have convergence with a slow rate or
no convergence [28], [31]. Hence, this paper proposes three
different initialization methods for massive MIMO uplink
systems based on the scaled identity matrix, the stair matrix,
and the banded matrix accompanied by the first iteration of
the NI method to approximate the initial vector. The scaling
parameter depends on the lower and upper eigenvalues of the
equalization matrix. The output of the proposed initialization
stage will be an input to the detection stage of the AOR,
the SOR, the GS, the JA, and the RI iterative methods. The
contributions of this work can be summarized as follows:

• We exploit the channel hardening phenomenon to propose
an efficient initialization based on a scaled identity matrix
and the first iteration of the NI method. The relaxation
parameter (ω) is selected based on the lower and upper
eigenvalues of the equalization matrix. Then the initial
vector is computed based on the first iteration of the NI
method.

• We also propose an efficient initialization based on a
stair matrix and the first iteration of the NI method. We
first compute the stair matrix inversion, which has the
same complexity as the diagonal matrix inversion. After
that, we approximate the equalization matrix inversion
using the NI method. Then the NI formula is employed
to estimate the initial vector.

• We propose an efficient initialization based on a band
matrix and the first iteration of the NI method. The inverse
of the band matrix is first computed and then employed
to initialize the massive MIMO detectors based on the NI
method.

• We conduct extensive simulations to demonstrate the
proposed detectors’ performance and computational com-
plexity in different scenarios. Several modulation schemes
(16QAM and 64QAM) and massive MIMO sizes are
used. Furthermore, to avoid misleading conclusions, per-
fect and imperfect channel state information (CSI) are
considered. We show that the proposed initializations
for massive MIMO detectors achieve a significant per-
formance improvement and remarkable complexity re-
duction in both perfect and imperfect CSI scenarios,
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especially when the user terminals’ number approaches
the base station (BS) antennas’ number.

The rest of this article is organized as follows: The system
model is described in Section II. In Section III, we demonstrate
the stair and band matrices and their properties. The proposed
initialization methods for several massive MIMO detectors are
presented in Section IV. Section V presents the complexity
profile for all the proposed detectors in terms of multiplica-
tions’ number. In Section VI, we present, discuss, and compare
our simulation results with conventional detectors and other
state-of-art methods. Finally, our conclusions are presented in
Section VII.

II. SYSTEM MODEL

In this paper, a massive MIMO uplink system with N
antennas at BS and K single antenna users is considered where
N ≫ K. After the transmission of modulated symbols, the
received signal at the BS is given by

y = Hx+w, (1)

where H is the N×K channel matrix, and w is N×1 circularly
symmetric complex additive white Gaussian noise (AWGN)
vector with mean 0 and covariance matrix σ2IN . In this paper,
we also consider imperfect channel state information (CSI),
such that the imperfect channel estimate H́ is given as [32],
[33]

H́ = ζH+
√

1−ζ2Ẽ, (2)

where Ẽ is the error matrix whose i.i.d. elements are modeled
as complex Gaussian with mean 0 and variance 1, and 0≤ ζ≤
1. The vectors x = [x1, x2, · · ·, xK ]

T and y = [y1, y2, · · ·, yN ]
T

denote the vector of data symbols transmitted by the K
users and the corresponding received signal vector at the
BS, respectively. The main objective of the massive MIMO
detector is to estimate x. While many massive MIMO detection
techniques exist in the literature, this work focuses on linear
detectors due to their simplicity and low complexity.

A. Linear MMSE Data Detection

The massive MIMO detector based on the MMSE is given
as

x̂ =
(
HHH+σ

2IK
)−1 HHy = W−1b, (3)

where b = HHy is the matched-filter output and W = HHH+
σ2IK represents the MMSE equalization matrix. On the other
hand, in the zero-forcing (ZF) based detector, the noise effects
are ignored, and the signal is estimated as

x̂ = G−1b, (4)

where G = HHH is the Gram matrix or Gramian. Unlike
the ZF detector, the MMSE equalization matrix considers the
noise effects and achieves higher performance gains. Notably,
the Gramian matrix is invertible in massive MIMO [26]. As
obvious from (3) and (4), both the ZF and MMSE based
detectors include a matrix inversion, which is not desirable
in hardware implementations, particularly for large N and

K. Therefore, iterative methods have been proposed to ap-
proximate or avoid matrix inversion. Although these methods
achieve a reasonable performance when N ≫ K, their perfor-
mance tends to deteriorate as K approaches N. In addition, a
large number of iterations is often required, which leads to
increased computational complexity.

B. Newton Iteration Method

In the Newton iteration (NI) method, we obtain an approxi-
mate estimate of the matrix inverse W−1 through n iterations.
If X(0) is the initial estimate of W−1, then the nth iteration
estimate is

X(n) = X(n−1)
(

2I−WX(n−1)
)
. (5)

It should be noted that the selection of X(0) plays a crucial
role in the convergence rate and the computational complexity
of the NI method. A common choice is X(0) =D−1 where D is
the diagonal matrix [16]. Equation (5) converges quadratically
to W−1 if ∥∥∥I−WX(0)

∥∥∥< 1. (6)

The signal in (3) can be estimated as

x̂ =
(
D−1 −D−1ED−1)b, (7)

where E consists of the off-diagonal entries of W.

C. Data Detection based on Iterative Methods

The NI based detector has a high complexity due to the large
number of iterations needed to converge. Hence, alternative
methods such as the AOR, the SOR, the GS, the JA, and the
RI have been proposed to detect the signal without the explicit
computation of W−1.

The AOR is a stationary iterative method for solving linear
systems where the signal can be estimated as

x̂(n) =(D− γU)−1 [(1−ω)D+(ω− γ)U+ωL] x̂(n−1)

+ω(D− γU)−1 b, (8)

where U and L are the strictly upper diagonal matrix, and
strictly lower diagonal matrix, respectively. Moreover, ω is
the relaxation parameter, and γ is the acceleration parameter,
and both are related to the eigenvalues of equalization matrix
[34], [35]. Furthermore, based on ω and γ, the AOR method
is reduced to the JA, GS, and SOR methods as:

JA method: γ = 0,ω = 1,
GS method: γ = ω = 1,
SOR method: γ = ω.

When γ=ω, a detector based on the SOR method can estimate
the signal as

x̂(n)=(D−ωL)−1 [ωU+(1−ω)D] x̂(n−1)+(D−ωL)−1
ωb. (9)

When ω = 1, a detector based on the GS method can estimate
the signal as

x̂(n) = (D−L)−1 Ux̂(n−1)+(D−L)−1 b. (10)
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When γ = 0,ω = 1, a detector based on the JA method can
estimate the signal as

x̂(n) = D−1 (L+U)x(n−1)+D−1b, (11)

which holds if

lim
n→∞

(
I−D−1W

)n
= 0. (12)

In (12), the condition is realized with very high probability in
massive MIMO systems [36]. In parallel computing platforms,
the JA method can be easily implemented [37]. However, the
JA method is neither robust nor as fast as the GS and SOR
methods in sequential computing platforms.

Another iterative method to achieve the MMSE performance
is the RI method. Although it has a low complexity, the
performance-complexity profile of the RI iterative method is
very sensitive to the value of the relaxation parameter (ω). The
signal in the RI method is estimated as

x̂(n) = x(n−1)+ω

(
b−Wx(n−1)

)
. (13)

For the iterative methods, if the spectral radius ρ
(
I−D−1G

)
<

1 is satisfied, the method is convergent for all initial vectors.
However, a smaller spectral radius leads to faster convergence.
Therefore, the selection of the initial estimate (x̂(0)) impacts
the number of iterations needed to detect the signal, and
accordingly, the computational complexity. In most iterative
methods, it is common to set the initial estimate [16] as

x̂(0) = D−1b. (14)

III. STAIR AND BAND MATRICES AND THEIR PROPERTIES

As the equalization matrix in MMSE is diagonally dom-
inant, the diagonal matrix has conventionally played a key
role in formulating most approximate inversion methods and
iterative methods for massive MIMO detection. Several recent
works, however, have established the merit of other formula-
tions, such as the band matrix [30] and the stair matrix [28].
Both types of matrices will play essential roles in the efficient
initialization techniques proposed in our work. It is thus worth
introducing these types of matrices and their properties in this
section.

A. Stair Matrix and Its Properties

Definition 1: A stair matrix (S) is a special tri-diagonal
matrix where one of conditions below is fulfilled:

- Type I: S(i,i−1) = 0,S(i,i+1) = 0, where
i = 1,3, · · ·,2

⌊K−1
2

⌋
+1,

- Type II: S(i,i−1) = 0,S(i,i+1) = 0, where i = 2,4, · · ·,2
⌊K

2

⌋
.

In other words, S is a tri-diagonal matrix where the off-
diagonal elements on either odd or even rows are zeros [28]. In
this paper, the stair matrix is denoted by S = (si,i−1,sii,si,i+1).

Algorithm 1: Exact solution of a linear system with
a stair matrix

Input: S,x,d
Output: x = S−1d
If S is of type I:

1 for i = 1 : 2 : 2
⌊K−1

2

⌋
+1

2 xi = s−1
ii di

end
3 for i = 2 : 2 : 2

⌊K
2

⌋
4 xi = s−1

ii (di − si,i−1di−1 − si,i+1di+1)
5 end

endif
If S is of type II:

6 for i = 2 : 2 : 2
⌊K

2

⌋
7 xi = s−1

ii di
8 end
9 for i = 1 : 2 : 2

⌊K−1
2

⌋
+1

10 xi = s−1
ii (di − si,i−1di−1 − si,i+1di+1)

11 end
endif
Return x.

Examples of Type I and Type II of the stair matrix are shown
as:

SType I =



× × 0 · · · · · · 0

0 × 0
. . . . . .

...
... × × ×

. . .
...

...
. . . 0 × 0 0

...
. . . . . . × × ×

0 · · · · · · · · · 0 ×


or

SType II =



× 0 · · · · · · · · · 0

× × × 0 · · ·
...

0 0 × 0 · · ·
...

... 0 × × ×
...

...
. . . . . . 0 × 0

0 · · · · · · 0 × ×


.

It is also noted that if S is a stair matrix, then SH and S−1

are also stair matrices [28]. If we have a linear system Sx = d,
the solution can be immediately obtained by computing S−1d
[38]. Algorithm (1) solves the stair linear system where di = 0
if i < 1 or i > K.

It is also worth noting that the K × K stair matrix is
nonsingular only in the case that the diagonal elements of
S are nonsingular. In addition, if S is nonsingular, then

S−1 = D−1 (2D−S)D−1.

B. Band Matrix and Its Properties

We begin with the following definition:
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Definition 2: A band matrix refers to a square matrix in
which zero elements are located at a distance of p above and
below the main diagonal. Here, p represents a value smaller
than the matrix’s size. Therefore, for a matrix of size K ×K,
it holds that p < K. Let W = (Wi j) denote a K ×K matrix,
and T = (Ti j) represent a banded matrix with a bandwidth of
2p+1, as defined by the following expression:

Ti j =

{
Wi j, | j− i| ≤ p
0, elsewhere

, (15)

where p is called the matrix bandwidth or the band parameter.
In the banded matrix, non-zero elements are only restricted to
the diagonal band, which includes the main and secondary
diagonals. An example of a banded matrix is shown below.

F =



× × 0 · · · · · · 0

× × ×
. . . . . .

...

0 × × ×
. . .

...
...

. . . × × × 0
...

. . . . . . × × ×
0 · · · · · · 0 × ×


(16)

According to [39], LU decomposition is usually used to find
T−1

p where the jth column of T−1
p can be calculated by solving

the following linear equations:

e j = LV j

V j = UT j, (17)

where e j is the jth column of the identity matrix, V j is an
intermediate vector, and Tj is the jth column of the inverse
matrix, respectively. In [39], the authors proposed several low-
complexity methods for obtaining the inverse of the banded
matrix.

IV. PROPOSED METHODS

In this section, we present the proposed hybrid massive
MIMO detectors to enhance the BER performance. We con-
sider five well-known iterative methods, namely, the AOR, the
SOR, the GS, the JA, and the RI methods. Due to its high
impact on the convergence rate and the detectors’ performance,
the initial solution should be carefully chosen.

A. Initialization based on NI and Scaled Identity Matrix
(Detector 1)

In this subsection, we propose an efficient initialization of
several massive MIMO detectors based on the NI and the
scaled identity matrix. The main idea behind the proposed
initialization is that utilization of the identity matrix instead of
the diagonal matrix (D) in a detector increases the convergence
rate. For instance, the iteration matrix in the RI method is
ϕRI = I−ωW while it is ϕJA = I−D−1W in the JA method.
However, the convergence rate of the RI based detector 1

ω
I

is faster than that in the JA based detector. Therefore, the
convergence rate of 1

ω
I in the NI based detector should

be faster than that of X(0) = D. Due to channel hardening
phenomena [40], we also can assume that D = W ≃ NI. If
N and K grow to infinity, the smallest and largest values of
eigenvalues of W would be stable [41] and can be presented
as

λmin = N

(
1−
√

K
N

)2

and λmax = N

(
1+

√
K
N

)2

. (18)

In this paper, we use the optimum ω as

ω =
2

λmin +λmax
. (19)

Therefore, matrix approximation after the first iteration of the
NI method can be expressed as

W̄−1 ≈
(

1
ω

I
)−1

(
2I−W

(
1
ω

I
)−1

)
, (20)

and the signal can be initially estimated as

v = W̄−1b. (21)

However, based on the NI method, x̂(0) can be presented as

x̂(0) = 2v−W̄−1Wv

= 2W̄−1b−W̄−1WW̄−1b

= W̄−1
(

2I−WW̄−1
)

b. (22)

In the AOR based detector, the corresponding estimation of
the signal after the first iteration is presented as

x̂(1) =ω(D− γU)−1 b
+(D− γU)−1 [(1−ω)D+(ω− γ)U+ωL]

×W̄−1
(

2I−WW̄−1
)

b. (23)

In the SOR based detector, the corresponding estimation of
the signal after the first iteration is given by

x̂(1) =(D−ωL)−1 [ωU+(1−ω)D]W̄−1
(

2I−WW̄−1
)

b

+(D−ωL)−1
ωb. (24)

In the GS based detector, the corresponding estimation of the
signal after the first iteration is given by

x̂(1) = (D−L)−1 UW̄−1
(

2I−WW̄−1
)

b+(D−L)−1 b. (25)

In the JA based detector, the corresponding estimation of the
signal after the first iteration is given by

x̂(1) = D−1 (L+U)W̄−1
(

2I−WW̄−1
)

b+D−1b. (26)

In the RI based detector, the corresponding estimation of the
signal after the first iteration is given by

x̂(1) =W̄−1
(

2I−WW̄−1
)

b

+ω

(
b−WW̄−1

(
2I−WW̄−1

)
b
)
. (27)

Algorithm (2) presents the proposed initialization of massive
MIMO detectors with the corresponding iterative methods.
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Algorithm 2: Massive MIMO detectors based on
the NI and identity matrix (Detector 1)
Input: y,H,σ2,n,γ, N, K
Output: Estimated signal x̂
Preparation and initialization:

1 W = HHH+σ2IK
2 b = HHy

3 λmin = N
(

1−
√

K
N

)2

4 λmax = N
(

1+
√

K
N

)2

5 ω = 2
λmin+λmax

6 M(0) = ωI
7 M(1) = M(0)(2I−WM(0))

8 s = M(1)b
9 x̂(0) = 2s−M(1)Ws

Detection:
10 for j = 1 : 1 : n
11 Option 1: AOR based detector
12 x̂( j) = (D− γU)−1 [(1−ω)D+(ω− γ)U+ωL] x̂( j−1)+

ω(D− γU)−1 b
13 Option 2: SOR based detector
14 x̂( j) =

(D−ωL)−1 [ωU+(1−ω)D] x̂( j−1)+(D−ωL)−1
ωb

15 Option 3: GS based detector
16 x̂( j) = (D−L)−1 Ux̂( j−1)+(D−L)−1 b
17 Option 4: JA based detector
18 x̂( j) = D−1 (L+U)x( j−1)+D−1b
19 Option 5: RI based detector

20 x̂( j) = x( j−1)+ω

(
b−Wx( j−1)

)
21 end

Return x̂.

B. Initialization based on the NI and the Stair Matrix (Detec-
tor 2)

According to [25], [37], computation of S−1 incurs the same
complexity order as the computation of D−1. In Detector 2, we
use the stair matrix to initialize all detectors based on iterative
methods as

x̂(0) = S−1b, (28)

where S−1 can be easily computed as shown in Algorithm (3).
Therefore, the first iteration of the AOR based detector is

x̂(1) =(D− γU)−1 [(1−ω)D+(ω− γ)U+ωL]S−1b
+ω(D− γU)−1 b. (29)

The SOR based detector’s first iteration is

x̂(1) =(D−ωL)−1 [ωU+(1−ω)D]S−1b
+(D−ωL)−1

ωb. (30)

The GS based detector’s first iteration is

x̂(1) = (D−L)−1 US−1b+(D−L)−1 b. (31)

The JA based detector’s first iteration is

x̂(1) = D−1 (L+U)S−1b+D−1b. (32)

The RI based detector’s first iteration is

x̂(1) = S−1b+ω
(
b−WS−1b

)
. (33)

In order to accelerate the convergence rate and hence, reduce
the computational complexity, we propose to utilize the stair
matrix (S) to approximate W−1 based on the NI formula.
Then, the approximated matrix (W−1) will be used to find
the initial solution of the iterative methods. We propose to
approximate the equalization matrix using the first iteration of
the NI method, where D is replaced by S as

W̄−1 ≈ S−1 (2I−WS−1) . (34)

Therefore, W̄−1 is calculated based on matrix-vector multipli-
cations instead of matrix-matrix multiplications. The initial es-
timation (x̄(0)) based on the first NI iteration can be expressed
as

x̄(0) = v = W̄−1b. (35)

Therefore, the AOR based detector’s first iteration is

x̂(1) =(D− γU)−1 [(1−ω)D+(ω− γ)U+ωL]W̄−1b
+ω(D− γU)−1 b. (36)

The SOR based detector’s first iteration is

x̂(1) =(D−ωL)−1 [ωU+(1−ω)D]W̄−1b
+(D−ωL)−1

ωb. (37)

The GS based detector’s first iteration is

x̂(1) = (D−L)−1 UW̄−1b+(D−L)−1 b. (38)

The JA based detector’s first iteration is

x̂(1) = D−1 (L+U)W̄−1b+D−1b. (39)

The RI based detector’s first iteration is

x̂(1) = W̄−1b+ω

(
b−WW̄−1b

)
. (40)

In order to further accelerate the convergence rate, we use
the Newton-Schultz [30] and (49) to estimate the initial vector
(x̂(0)) as

x̂(0) =2v−W̄−1Wv
=2S−1 (2I−WS−1)
−S−1 (2I−WS−1)WW̄−1b. (41)

Therefore, the AOR-based detector’s first iteration is

x̂(1) =(D− γU)−1 [(1−ω)D+(ω− γ)U+ωL]
×2S−1 (2I−WS−1)
−S−1 (2I−WS−1)WW̄−1b
+ω(D− γU)−1 b. (42)

The SOR based detector’s first iteration is

x̂(1) =(D−ωL)−1 [ωU+(1−ω)D]

×2S−1 (2I−WS−1)
−S−1 (2I−WS−1)WW̄−1b
+(D−ωL)−1

ωb. (43)
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Algorithm 3: Proposed massive MIMO detectors
based on (1) the stair matrix (2) the NI and stair
matrix (Detector 2)
Input: y,H,σ2,n,ω,γ
Output: Estimated signal x̂
Computation of the stair matrix:

1 W = HHH+σ2IK
2 S = stair(W)

Preparation and initialization:
3 Inverse of the stair matrix:
4 S−1 = A = stair

(
A(m,m−1),A(m,m),A(m,m+1)

)
5 for m = 1 : 1 : K
6 A(m,m) = 1/S(m,m)

7 end
8 for m = 2 : 2 : 2⌊K/2⌋

9 A(m,m−1) =−S(m,m−1)A(m,m)A(m−1,m−1)
10 A(m,m+1) =−S(m,m+1)A(m,m)A(m+1,m+1)
11 end
12 S−1 = A
13 Initialization:
14 b = HHy
15 Option 1:
16 x̂(0) = S−1b
17 Option 2:
18 M(0) = S−1

19 M(1) = M(0)(2I−WM(0))

20 s = M(1)b
21 x̂(0) = 2s−M(1)Ws

Detection:
22 for j = 1 : 1 : n
23 Option 1: AOR based detector
24 x̂( j) = (D− γU)−1 [(1−ω)D+(ω− γ)U+ωL] x̂( j−1)+

ω(D− γU)−1 b
25 Option 2: SOR based detector
26 x̂( j) =

(D−ωL)−1 [ωU+(1−ω)D] x̂( j−1)+(D−ωL)−1
ωb

27 Option 3: GS based detector
28 x̂( j) = (D−L)−1 Ux̂( j−1)+(D−L)−1 b
29 Option 4: JA based detector
30 x̂( j) = D−1 (L+U)x( j−1)+D−1b
31 Option 5: RI based detector

32 x̂( j) = x( j−1)+ω

(
b−Wx( j−1)

)
33 end

Return x̂.

The GS based detector’s first iteration is

x̂(1) =(D−L)−1 U
×2S−1 (2I−WS−1)
−S−1 (2I−WS−1)WW̄−1b
+(D−L)−1 b. (44)

Algorithm 4: Proposed massive MIMO detectors
based on the NI and band matrix (Detector 3)

Input: y,H,σ2,n,ω,γ, p
Output: Estimated signal x̂
Computation of the stair matrix:

1 W = HHH+σ2IK
2 F = band(W)

Preparation and initialization:
3 Inverse of the band matrix:
4 F−1 = A = (ai j)
5 for j = 1 : 1 : K
6 if i ∈ [ j, j+1, · · · , j+ p−1]
7 a j j =

1
u j j

8 ai j =
−(u jia j j+u j+1,ia j+1, j+···+ui−1,iai−1, j)

uii
9 end

10 if i ∈ [ j−1, · · · ,2,1]
11 ai j =

−(ui,i+1ai+1, j+ui,i+2ai+2, j+···+ui,i+p,iai+p, j)
uii

12 end
if i ∈ [ j+ p, · · · ,K]

13 ai j =
−(ui−p,iai−p, j+···+ui−2,iai−2, j+ui−1,iai−1, j)

uii
14 end
15 end
16 F−1 = A
17 Initialization:
18 b = HHy
19 x̂(0) = F−1b
20 M(0) = F−1

21 M(1) = M(0)(2I−WM(0))

22 v = M(1)b
23 x̂(0) = 2v−M(1)Wv

Detection:
24 for j = 1 : 1 : n
25 Option 1: AOR based detector
26 x̂( j) = (D− γU)−1 [(1−ω)D+(ω− γ)U+ωL] x̂( j−1)+

ω(D− γU)−1 b
27 Option 2: SOR based detector
28 x̂( j) =

(D−ωL)−1 [ωU+(1−ω)D] x̂( j−1)+(D−ωL)−1
ωb

29 Option 3: GS based detector
30 x̂( j) = (D−L)−1 Ux̂( j−1)+(D−L)−1 b
31 Option 4: JA based detector
32 x̂( j) = D−1 (L+U)x( j−1)+D−1b
33 Option 5: RI based detector

34 x̂( j) = x( j−1)+ω

(
b−Wx( j−1)

)
35 end

Return x̂.

The JA based detector’s first iteration is

x̂(1) =D−1 (L+U)

×2S−1 (2I−WS−1)
−S−1 (2I−WS−1)WW̄−1b
+D−1b. (45)
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The RI based detector’s first iteration is

x̂(1) =2S−1 (2I−WS−1)
−S−1 (2I−WS−1)WW̄−1b

+ω

(
b−2WS−1(2I−WS−1)−S−1(2I−WS−1)WW̄−1b

)
.

(46)

Algorithm (3) describes the proposed massive MIMO detectors
based on the stair matrix and the NI formula.

C. Initialization based on the NI and the Band Matrix (De-
tector 3)

According to [29], if the equalization matrix is diagonally
dominant, then for any K ≤ N the iterative methods are
convergent for any initial vector. In the case of the band matrix,
the band parameter (p) plays a crucial role in achieving a fast
convergence rate. In Detector 3, we employ the band matrix
defined in Section III-B and the NI method to initialize the
massive MIMO detectors. We first use the band matrix to
initialize all detectors based on iterative methods as

x̂(0) = F−1b, (47)

where F presents the band matrix extracted from W, and
F−1 can be easily computed as shown in Algorithm (4). In
order to achieve a fast convergence rate and hence, reduce the
computational complexity, we also propose to use the band
matrix (F) to approximate the equalization matrix inverse W−1

based on the first iteration of the NI formula as

W̄−1 ≈ F−1 (2I−WF−1) . (48)

It is clear that W̄−1 is calculated based on matrix-vector
multiplications instead of matrix-matrix multiplications. The
initial estimation (x̄(0)) based on the first NI iteration can be
expressed as

x̄(0) = v = W̄−1b = F−1 (2I−WF−1)b. (49)

Therefore, x̂(0) can be presented as

x̂(0) = 2v−W̄−1Wv

= 2W̄−1b−W̄−1WW̄−1b

= W̄−1
(

2I−WW̄−1
)

b

= F−1 (2I−WF−1)[2−W̄−1W
]

b. (50)

Therefore, the AOR based detector’s first iteration is written
as

x̂(1) =(D− γU)−1 [(1−ω)D+(ω− γ)U+ωL]

×F−1 (2I−WF−1)[2−W̄−1W
]

b

+ω(D− γU)−1 b, (51)

The SOR based detector’s first iteration is

x̂(1) =(D−ωL)−1 [ωU+(1−ω)D]

×F−1 (2I−WF−1)[2−W̄−1W
]

b

+(D−ωL)−1
ωb, (52)

Table I
COMPUTATIONAL COMPLEXITY OF THE ITERATION STAGE IN ITERATIVE

METHODS.

Method Number of multiplications
AOR based detector n

2

(
3K2 +7K

)
SOR based detector 4nK (K +1)
GS based detector (n+1)K2 +4K
JA based detector 4(n+1)K2 +2(n+4)K
RI based detector nK (4K +3)

The GS based detector’s first iteration is

x̂(1) =(D−L)−1 UF−1 (2I−WF−1)[2−W̄−1W
]

b

+(D−L)−1 b. (53)

The JA based detector’s first iteration is

x̂(1) = D−1 (L+U)F−1 (2I−WF−1)[2−W̄−1W
]

b+D−1b,
(54)

The RI based detector’s first iteration is

x̂(1) =F−1 (2I−WF−1)[2−W̄−1W
]

b

+ω

(
b−WF−1 (2I−WF−1)[2−W̄−1W

]
b
)
. (55)

Algorithm (4) shows the details of initialization and the
proposed massive MIMO detectors based on the band matrix
and the NI method.

V. COMPLEXITY ANALYSIS

The fact that the hardware complexity is primarily de-
termined by the number of multiplications is widely rec-
ognized [42]. Consequently, this paper focuses on assessing
the computational complexity by examining the necessary
number of multiplications. The computational complexity of
the proposed massive MIMO data detection techniques is split
into two stages; preparation & initialization and iteration.
For the preparation & initialization stage, the computation
of the matrix inversion, the matched filter output (b), and
the first iteration of the NI method are considered. All pro-
posed detectors require the computation of b, where 4NK
multiplications are needed. The computation of D−1 requires
K multiplications. The number of multiplications required
to compute x̂(0) based on the NI method is 8(KN +K). In
addition, the computation of F−1 requires 2pK2+(3p+5) pK
multiplications [39] while S−1 needs 3(K −1) multiplications
[28]. Multiplications’ number in the iteration stage in all
iterative methods (conventional detectors) is presented in Table
I. Clearly, the number of iterations (n) significantly impacts the
number of multiplications.

The total number of multiplications required for each of the
proposed detectors (preparation & initialization and iteration)
is presented in Table II. Detector 1, detector 2, and detector
3 correspond to the proposed detectors in Algorithm (2),
Algorithm (3), and Algorithm (4), respectively. As shown in
Table II, the MMSE complexity O

(
K3
)

is reduced to O
(
K2
)

using the proposed detectors. However, the complexity of the
detector in [17] is presented as O(NK) where two iterations of
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Table II
COMPUTATIONAL COMPLEXITY OF PROPOSED DETECTORS.

Detector Number of multiplications
MMSE based detector [43] 8K2 +4K3 +4N

(
K2 +K

)
Detector in [17] (3−2n)NK
AOR based detector 1 n

2

(
3K2 +7K

)
+8(KN +K)

SOR based detector 1 4nK (K +1)+8(KN +K)

GS based detector 1 (n+1)K2 +4K +8(KN +K)

JA based detector 1 4(n+1)K2 +2(n+4)K +8(KN +K)
RI based detector 1 nK (4K +3)+8(KN +K)

AOR based detector 2 n
2

(
3K2 +7K

)
+8(KN +K)+3(K −1)

SOR based detector 2 4nK (K +1)+8(KN +K)+3(K −1)
GS based detector 2 (n+1)K2 +8(KN +K)+3(K −1)
JA based detector 2 4(n+1)K2+2(n+4)K+8(KN+K)+3(K−1)
RI based detector 2 nK (4K +3)+8(KN +K)+3(K −1)
AOR based detector 3 n

2

(
3K2+7K

)
+8(KN+K)+2pK2+(3p+5) pK

SOR based detector 3 4nK (K +1)+8(KN+K)+2pK2+(3p+5) pK
GS based detector 3 (n+1)K2+8(KN+K)+2pK2+(3p+5) pK
JA based detector 3 4(n+1)K2+2(n+4)K+8(KN+K)+2pK2+(3p+5)pK
RI based detector 3 nK (4K+3)+8(KN+K)+2pK2+(3p+5) pK

the NI method are required to initialize the RI based detector.
In Section VI, it is shown the proposed detectors converge
faster than the detector in [17].

VI. NUMERICAL RESULTS

In this section, we use simulation results to investigate
the performance of our proposed methods and compare them
with conventional techniques. Our results are obtained by
averaging over 10,000 instances of the channel matrix H,
whose elements are independent complex Gaussian with mean
zero and variance 1. We consider QPSK, 16QAM and 64QAM
modulations in our simulations. We also consider several
massive MIMO size, including 20×160, 30×160, 40×160.
For Detector 3, the band parameter is set as p = 5. While
the majority of our results assume perfect CSI, the impact
of imperfect CSI is also considered. The performance of the
classical MMSE detector is shown as a benchmark in all our
simulation results. In addition, it is noteworthy that not every
iteration could improve the performance. However, every extra
iteration could increase the computational complexity. In this
paper, we are using the smallest number of iterations to attain
the MMSE performance.

In Figs. 1(a), 1(b), and 1(c), we show the BER performances
of the three proposed detectors combined with the selected
iterative methods and compare them with the performances of
the conventional iterative methods that do not use the proposed
initialization. This is done using 16QAM, a 20×160 massive
MIMO system, and only a single iteration (n = 1). We also
compare it with the performance of the detector developed
in [17].

It is clear from Fig. 1(a) that detector 1 with all the proposed
methods yields performance that overlaps with MMSE for the
whole SNR range. The performance is also approximately
0.5 dB better than the detector proposed in [17] at BER
of 10−4. For each method, there are substantial gains for
using the proposed initialization compared to the conventional
(diagonal-based) initialization. For instance, at BER of 10−3,
the proposed GS exhibits a gain of approximately 1 dB, the
proposed JA a gain of approximately 3.2 dB, while the RI,
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(a) BER performance vs. SNR of proposed detector 1, n = 1
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(b) BER performance vs. SNR of proposed detector 2, n = 1
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(c) BER performance vs. SNR of proposed detector 3, n = 1

Fig. 1. Performance comparison of the proposed detectors, the MMSE based
detector, the conventional iterative methods, and the detector in [17], in 20×
160 MIMO, 16QAM: (a) Detector 1, (b) Detector 2, and (c) Detector 3.

SOR, and AOR all exhibit very high gains (more than 6 dB).
Similar trends are also observed for detectors 2 and 3 in
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(b) BER performance vs. SNR of proposed detector 2, n = 1
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(c) BER performance vs. SNR of proposed detector 3, n = 1

Fig. 2. Performance comparison of the proposed detectors, the MMSE based
detector, conventional iterative methods, and the detector in [17], in 20×160
MIMO, 64QAM: (a) Detector 1, (b) Detector 2, and (c) Detector 3.

Figs. 1(b) and 1(c), respectively, with approximately similar
gains. These figures confirm the advantage of our proposed
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(b) BER performance vs. SNR of proposed detector 2, n = 3
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(c) BER performance vs. SNR of proposed detector 3, n = 2

Fig. 3. Performance comparison of proposed detectors, the MMSE based
detector, conventional iterative methods, and the detector in [17], in 40×160
MIMO, 64QAM: (a) Detector 1, (b) Detector 2, and (c) Detector 3.

initialization, especially that MMSE performance is achieved
with a single iteration n = 1.



ALBREEM et al.: EFFICIENT DETECTORS FOR UPLINK MASSIVE MIMO SYSTEMS 45

0 2 4 6 8 10 12 14

SNR

10-6

10-5

10-4

10-3

10-2

10-1

B
E

R

 Perfect CSI Perfect CSI

 Imperfect CSI Imperfect CSI Imperfect CSI Imperfect CSI

 Perfect CSI Perfect CSI

 Imperfect CSI Imperfect CSI Imperfect CSI Imperfect CSI

MMSE based detector
Detector in [17]
Proposed GS based detector 1
Proposed GS based detector 2
Proposed GS based detector 3
Proposed SOR based detector 1
Proposed SOR based detector 2
Proposed SOR based detector 3
Proposed AOR based detector 1
Proposed AOR based detector 2
Proposed AOR based detector 3
Proposed RI based detector 1
Proposed RI based detector 2
Proposed RI based detector 3
Proposed JA based detector 1
Proposed JA based detector 2
Proposed JA based detector 3

Fig. 4. Performance comparison between proposed detectors, MMSE based
detector, and the detector in [17], 30×160 MIMO, QPSK where perfect and
imperfect CSI are considered.

In Figs. 2(a), 2(b), and 2(c) we repeat the same experiments
as Figs. 1(a), 1(b), and 1(c), but using 64QAM. In Fig. 2(a)
the performance of the proposed AOR, almost overlaps with
the MMSE, while those of the GS, RI, and SOR are very
close to MMSE. However, the proposed JA diverges from the
MMSE at high SNR. In particular, it diverges by more than
2 dB at BER of 10−6. At BER of 10−3, all the proposed
detectors yield a gain of approximately 2 dB compared to
the detector in [17]. The gains compared to the conventional
detectors are higher than those obtained at 16QAM. For
instance, the gain of the GS is higher than 6 dB at BER of
10−3, while the gains of the other method are much higher
since the conventional methods seem to exhibit error floors at
high SNR, unlike the proposed methods. For detector 2, we
can see in Fig. 2-b that the proposed GS and SOR overlap
with the MMSE. The RI and AOR diverge from the MMSE
starting from SNR of 16 dB, with a performance loss of
more than 2 dB at BER of 10−6. The JA, however, diverges
from the MMSE earlier, at approximately 13 dB, with a
performance loss of approximately 3 dB at BER of 10−4.
Needless to say, all the proposed methods outperform the
method [17] and significantly outperform their conventional
counterparts. For detector 3, we can see in Fig. 2(c) that all
the proposed methods overlap with MMSE. Hence, among the
three proposed detectors, detector 3 seems to offer the best
performance as the modulation order increases.

In Figs. 3(a), 3(b), and 3(c), we investigate the impact of
increasing the number of users on the performance of the pro-
posed detectors. In particular, we consider a 40×160 massive
MIMO system with 64QAM. As expected, the performance
somewhat deteriorates as the size of the system increases. For
Detector 1 with n = 1, the AOR offers the closest performance
to the MMSE, with a gap of less than 1 dB at BER of 10−4,
though the gap increases to about 2.5 dB at BER of 10−3.
For the GS, the gap is approximately 1.5 dB at BER of 10−4

and approximately 3 dB at BER of 10−5. For the SOR, the
gap is approximately 6 dB at BER of 10−4. For the RI, the
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(a) Complexity comparison between the proposed detectors and the
MMSE based detector

(b) Complexity comparison between the proposed detectors and the
detector in [17]

Fig. 5. Complexity comparison as a function of the number of transmitting
antennas, n = 1, p = 5, and N = 160.

gap is approximately 6.8 dB at BER of 10−3. In general,
the proposed AOR and GS are the closest to the MMSE,
while the JA is the farthest. Still, with the proposed detector
we achieve viable performance with AOR, GS, and SOR,
compared to the conventional methods whose performance
degrades significantly with the increase in the size of the
system.

Fig. 3(b) shows the performance of Detector 2 for the 40×
160 massive MIMO system with n = 3. In this case, both the
AOR and the GS almost overlap with the MMSE, while the
SOR is close to the MMSE, slightly diverging at high SNR.
While the proposed RI performs significantly better than the
conventional RI (more than 10 dB better at BER of 4×10−2),
it is still significantly far from MMSE performance and seems
to encounter an error floor. Moreover, there is no remarkable
difference between the performance of the conventional and



46 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

proposed JA, both of which are significantly degraded. It is
also noticed that the AOR, GS, SOR, and RI all outperform
the detector proposed in [17].

Fig. 3(c) shows the performance of Detector 3 for the
40×160 massive MIMO system with n = 2. Again as before,
it is observed that all proposed detectors outperform their
conventional counterparts and outperform the Detector of [17].
Moreover, the GS, the proposed AOR, GS, and the SOR all
overlap with MMSE performance. As with Detector 1 and
Detector 2, the RI and the JA are the most affected by the
increase in the size of the system. However, both of them
perform much better with Detector 3 than with Detectors 1
and 2, with the RI achieving BERs below 10−3 at high SNR.
While all the proposed detectors outperform their conventional
counterparts, it seems that Detector 3 with GS, AOR, and SOR
offers the best performance for large-sized systems.

While the previous results all assume perfect CSI, in Fig. 4,
we investigate the impact of imperfect CSI on the performance
of the proposed estimators. In order to avoid any misleading
conclusions, we present the performances of the proposed
detectors in case of perfect and imperfect CSI. In order to
model imperfect CSI, we assume that the estimated channel
is related to the true channel by (2) where ζ is set to 0.9.
We use QPSK with a system size is 30 × 160 and n = 1
iteration for all detectors. In case of imperfect CSI, in general,
for all iterative methods, Detector 3 seems to offer the best
performance with imperfect CSI, followed by Detector 1 and
then Detector 2. Moreover, all the proposed detectors, except
JA based Detector 2, perform better than the detector proposed
in [17] for imperfect CSI. The detector in [17] diverge from
the proposed detectors starting from SNR of 4 dB, with a
performance loss of more than 3 dB at BER of 10−4. It is also
noticed that for RI and JA, the performances of both Detector
1 and Detector 2 are affected by imperfect CSI. While for the
AOR, GS and SOR, all detectors perform close to the MMSE.
The proposed JA based detector 2 suffers from performance
loss at high SNR. In general, it is observed that Detector 3 is
the most robust to channel errors.

We next investigate the computational complexity of the
proposed estimators. Fig. 5 illustrates all the proposed de-
tectors as well as the benchmark MMSE in terms of the
multiplications versus the number of transmitting antennas.
The number of received antennas is fixed at 160, and the
number of iterations is set to n = 1. From Fig. 5(a), it is
clear that the proposed detectors provide a huge reduction
in complexity compared to the MMSE. In fact, compared
to the MMSE, the proposed detectors require approximately
10−20× less multiplications. Due to the large gap between the
proposed detectors and the MMSE, we show the complexity
of the proposed detectors without the MMSE in Fig. 5(b),
for better resolution. It is observed that Detectors 1 and 2
have almost identical complexity for all the methods, while
Detector 3 has higher complexity than both. Moreover, the
gap between Detectors 1, 2, and Detector 3 increases with
the number of transmitting antennas. However, Detector 3
does not seem to exceed twice the number of computations
of Detectors 1 and 2.

In Fig. 6, we compare the computational complexity of the

Fig. 6. Complexity comparison between proposed detectors, MMSE based
detector, and the detector in [17] to achieve BER = 10−4, 40×160 MIMO,
and 64QAM.

proposed estimators in terms of the number of multiplications
needed to achieve a BER of 10−4 for a 40 × 160 massive
MIMO system and 64QAM. For reference, we also provide
the complexity of the detector in [17]. It is again observed
that there is a huge reduction in complexity compared to the
MMSE detector.For all proposed detectors, the AOR has the
lowest complexity to achieve the target performance. However,
the JA method based on Detectors 1 & 2 failed to attain
BER= 10−4. However, it works well when the ratio between
the number of transmitting and receiving antennas is very
small.

VII. CONCLUSION

In this paper, we considered the problem of data detection in
massive MIMO systems. Three different initialization methods
for massive MIMO detectors were developed based on the
NI method, the scaled identity matrix, the stair matrix, and
the band matrix. The proposed initialization methods were
combined with the AOR, the SOR, the GS, the JA, and the
RI methods. Using simulation results, the proposed detectors
achieved a good performance with a significant complexity
reduction in both perfect and imperfect CSI scenarios, un-
der different modulation schemes, and when the number of
users approaches the number of BS antennas. An attractive
feature of the proposed detectors is that a large number of
iterations is not required to attain MMSE performance when
the number of receiving antennas is much larger than the
number of transmitting antennas. We also showed that the
proposed detectors achieved a significant improvement in BER
performance with a significant complexity reduction compared
to the conventional detectors that employ the diagonal matrix
in the initialization stage. Moreover, the proposed AOR and
SOR based detectors achieved the best performance and lowest
complexity in the various considered scenarios. Finally, many
of the steps in the implementation of the proposed massive
MIMO detectors lend themselves to a real-time implementa-
tion in the presence of appropriate computational resources.
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