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Statistical Analysis of Cascaded Nakagami-m
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Ibrahim Ghareeb and Osama Al-Shalali

Abstract—This paper studies the statistical analysis of cascaded
Nakagami-m fading channels that are arbitrarily correlated and
not necessarily identically distributed. The probability density
function (PDF), cumulative distribution function (CDF), and
the nth moment for the product of N correlated Nakagami-
m random variables (RVs) are derived and presented in exact
form expressions using the Meijer’s G function. The cascaded
channels are assumed to have flat and slow fading with arbitrarily
non-identical fading severity parameters. Using these results, the
impact of channel correlation and fading severity parameters
are investigated for the cascaded Nakagami-m channels. Fur-
thermore, performance analysis addressed by outage probability
(OP), average channel capacity, and average bit error probability
(BEP) for coherently detected binary PSK and FSK signals are
derived. As a consequence of the versatility of Nakagami-m
distribution, the derived expressions can compromise the statis-
tics of other useful multivariate distributions such as One-sided
Gaussian distribution with m = 1/2 and Rayleigh distribution
with m = 1. To the best of the authors’ knowledge, the derived
expressions are novel and have not been reported in the literature.
To aid and verify the theoretical analysis, numerical results
authenticated by Monte Carlo simulation are presented.

Index Terms—Average bit error probability, average channel
capacity, cascaded fading channels, generalized correlation, key-
hole channels, Nakagami-m distribution, outage probability.

I. INTRODUCTION

THE demand for higher performance and reliability
in communication systems has increased significantly.

Therefore, the attention to have accurate channel modeling
in system design and development has been considerably
important. Generally, the propagation of radio signals in
wireless channels is characterized by some environmental
effects such as path loss, multipath (short-term) fading, and
shadowing (long-term) fading. Using experimental radio prop-
agation measurements, the short-term, long-term, and mixed
fading channels can be statistically represented by various
channel models. Since wireless fading channels characteristics
vary widely, the need for accurate channel modeling that can
precisely represent the channel statistical properties has been
a continuing concern [1].

Recently, cascaded “compound” fading channels topic has
been a major of interest within the field of 5G wireless
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communications. As opposed to the classical one-way fad-
ing channel, the signal transmitted from the sender to the
receiver experiences a cascade of reflections/diffractions. Con-
sequently, a wide range of realistic and efficient communica-
tion scenarios can be modeled as cascaded fading channels.
For instance, keyhole channels, node-to-node communica-
tion channels, dual-hop fading channels and radio-frequency
identification (RFID) keyhole channels [2]–[11]. Furthermore,
recent works have made valuable contributions to the field of
wireless cascaded re-configurable intelligent surfaces (RISs)
[12] and [13]. More specifically, cascaded RIS wireless net-
works are intended to extend the wireless network’s coverage
by efficiently bypass obstacles within the propagation media
and serve the ground node through a unique cascaded route
or link. In [12], under the assumption of perfect knowledge
of the end-to-end channel the performance of a cascaded RIS
network affected by imperfect phase estimation in a downlink
scenario was investigated. Whereas in [13] approximation
to the channel distribution of cascaded RIS-aided wireless
networks with phase errors over Nakagami-m fading channels
was presented. Generally, the signal being sent from the
transmitter to the receiver is received after exhibiting multiple
scatters. Therefore, the overall end-to-end channel gain is
multiplicative and can be represented as a model of the product
of each sub-channel fading coefficient.

In the literature, early and recent works have been dedicated
to studying the statistical properties of cascaded fading chan-
nels with the assumption that the sub-channels are statistically
independent [14]–[21]. In this respect, using an inverse Mellin
transformation and a Meijer G-function, the PDF and CDF
for the product of N independent Rayleigh distributed RVs
were derived and expressed in a closed-form [14]. In [15],
the performance of multihop-intervehicular communication
systems is introduced, where the authors have considered the
independent cascaded Rayleigh fading channel as an appro-
priate multipath fading channel model for vehicle-to-vehicle
communication systems. The statistics of cascaded Weibull
fading channels have been investigated in [16], where the
PDF and the average channel capacity of the product of N
independent, not necessarily identical, Weibull distributed RVs
were derived. In the same matter, the statistical representations
of the product of N independent but not necessarily identically
distributed Nakagami-m RVs was studied in [17], where the
PDF, CDF, moments-generating function and moments of
the “so-called” N∗Nakagami distribution were derived and
expressed in closed-form. In order to mitigate fading in such a
channel, many diversity techniques have been studied in [18].
The author has examined the performance of the N∗Nakagami
channel for the selection, equal gain, generalized selection, and
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maximal ratio combining techniques. In [19], the statistics of
a generic fading distribution called the N -product Generalized
Nakagami-m distribution have been investigated. For such a
channel, the PDF, CDF, moments-generating function, and
moments have been derived and expressed in closed-forms
in terms of Fox’s H function. Furthermore, the authors have
presented closed-form expressions for the outage probability,
amount of fading (AoF), outage capacity, and the average
bit error probability. One of the versatile distributions is the
α − µ distribution which can be compromised to fit many
other practical and feasible statistical distributions, such as,
Nakagami-m, Weibull, Rayleigh, and Gamma distributions. In
this regard, the statistics of cascaded α − µ fading channels
have been introduced in [20], where exact and closed-form
expressions for the PDF, CDF, and OP of independent and
non-identically distributed α − µ RVs have been studied.
Recently, many cascaded fading channel models have been
proposed. Within this framework, statistical analysis for the
ratio of the products of fluctuating two-ray RVs was introduced
in [21], where exact expressions for PDF, CDF, MGF, and AoF
have been obtained. The authors in this work have shown
the value and use of the derived mathematical expressions
to investigate the performance of multi-hop communication
systems in multiple interference scenarios. In [22], statistical
analysis of cascaded Rician fading channels were studied.
Channel modeling in the presence and/or absence of Line-
of-Site in small-scale and large-scale fading cascaded double
Beaulieu-Xie fading channel was proposed in [23], where
statistical analysis for the product of two independent but
not necessarily identically distributed Beauliey-Xie RVs were
introduced.

Practically, signals propagating in cascaded fading channels
can undergo correlated scatters. For instance, RFID architec-
ture necessitates having correlation between the forward and
backscatter links [24]. To make this claim clear, in cascaded
fading channels, the received signal is subjected to N relay
levels. In such scenarios, the only direct link is the link
between adjacent levels, where each level receives a faded
version from the preceding level. As a result, correlation at
each hop between successive channels occurs [25]. Therefore,
dependency declare among cascaded fading channels needs to
be taken into consideration. In the literature, there is plenty
of research concerning correlation between cascaded fading
channels [26], [27]. In the earlier work of Goldman and Som-
mer they have examined several modulation techniques over
independent and correlated Rayleigh cascaded fading channels
[26]. Regardless of the used modulation technique, they have
shown that reliability is higher in correlated fading than in
independent fading. Recently, statistical analysis for arbitrarily
correlated Rayleigh fading channels has been studied in [27],
where exact expressions of the PDF, CDF, the PDF and CDF
of the instantaneous signal-to-noise ratio, average channel
capacity, and the average bit error probability for coherently
detected binary signals have been derived.

The Nakagami-m distribution has attracted a widespread
application in the modeling of wireless fading channels [28],
[29]. In the literature, few attempts have been made to study
the statistics of cascaded Nakagami-m fading channels with

arbitrary correlation [30], [31]. In this respect, an approxi-
mation for the PDF and CDF of N correlated Nakagami-m
fading channels have been studied in [30]. In [31], the effect
of channel correlation between the forward and backscatter in
RFID was investigated. Among the aforementioned works, the
statistics of correlated Nakagami-m fading channels are not
exact ”approximations” and/or subject to limitations, either in
fading parameters or structure of correlation. Also, these works
consider Nakagami-m fading channels with the same severity
value m. However, in practical wireless scenarios, fading
parameters vary depending on the channel characteristics [32].
Therefore, the need for exact-form for the statistics of cascaded
Nakagami-m fading channels with arbitrary correlation and
non-identically distributed becomes an essential demand.

However, to the best of authors knowledge, studies that
consider the statistical analysis of generalized cascaded
Nakagami-m fading channels with arbitrary correlation and
non-identically distributed have not been reported in the liter-
ature. Motivated to fill this gap, we have analyzed the PDF,
CDF, and the nth moment for the product of N correlated
Nakagami-m random variables. Also, the PDF, CDF, and the
n-th moment of the received instantaneous SNR over slow and
flat fading compound channels were obtained. The impact of
sub-channels correlation and fading severity parameters are
investigated. Furthermore, performance analysis addressed by
outage probability, average channel capacity, and average bit
error probability for coherently detected binary PSK and FSK
signals are also derived to gain more insight into the system.
The remainder of this paper is organized as follows. In
Section II, the statistics of the end-to-end cascaded Nakagami-
m fading channels with arbitrary correlation are introduced.
In Section III, applications and performance analysis are
obtained. In Section IV, numerical and simulation results on
the OP, channel capacity and BEP are introduced. In the last
section, the main results are summarized and concluded.

II. STATISTICAL CHARACTERISTICS

A. Representation of Correlated Nakagami-m RVs

We are interested in the statistics of the end-to-end cascaded
N correlated Nakagami-m fading channels, which do not nec-
essarily have the same fading parameters m , or are not even
identical. Following the fading model for the N Correlated
Nakagami-m RVs described in [33]. For the subsequent use
we define a complex vector Gk = [Gk1, Gk2, · · ·, Gkmk

]
T

where [ . ]
T denotes the transpose operator and Gkℓ (k =

1, 2, · · ·, N, ℓ = 1, 2, · · ·,mk) are complex Gaussian random
variables (RV’s). The RV Gkℓ could be written as

Gkℓ=GXkℓ
+ jGYkℓ

for k=1, · · ·, N, ℓ=1, · · ·,mk, (1)

where GXkℓ
= σk

(√
1− λ2

kXkℓ + λkX0ℓ

)
and GYkℓ

=

σk

(√
1− λ2

kYkℓ + λkY0ℓ

)
are the real and imaginary parts

of Gkℓ respectively. The parameter λk ∈ (−1, 1)\{0} is a cor-
relation dependent parameter, σk is a finite real value and the
components Xkℓ, Ykℓ (k = 1, 2, · · ·, N, ℓ = 1, 2, · · ·,mk) are
assumed to be mutually independent Gaussian random vari-
ables with mean zero (i.e. E [Xkℓ] = 0 and E [Ykℓ] = 0) and
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variance equals to 1/2 (i.e. E
[
X2

kℓ

]
= 1/2 and E

[
Y 2
kℓ

]
=

1/2) denoted by N (0, 1/2). Therefore, for any k, j ∈
{1, 2, · · ·, N} and ℓ, n ∈ {1, 2, · · ·,mk}, E [XkℓYjn] = 0,
E [XkℓXjn] =

1
2δkjδℓn and E [YkℓYjn] =

1
2δkjδℓn, where δkj

is the Kronecker delta function, which is defined as δkk = 1
and δkj = 0 for k ̸= j. Hence, the cross-correlation coefficient
between Gkℓ and Gjn (k ̸= j) may be expressed as

ρkℓ,jn =
E
[
GkℓG

∗
jn

]
− E [Gkℓ]E

[
G∗

jn

]√
E
[
|Gkℓ|2

]
E
[
|Gjn|2

]
=

 λkλj , k ̸= j and ℓ = n
1, k = j and ℓ = n
0, ℓ ̸= n.

(2)

Define a new RV Vk, such that

Vk = GH
k Gk =

mk∑
ℓ=1

|Gkℓ|2

=

mk∑
ℓ=1

G2
Xkℓ

+

mk∑
ℓ=1

G2
Ykℓ

, (3)

where GH
k is the Hermitian of vector Gk, which is its

conjugate transpose: GH
k = (G∗

k)
T . It is clear that Vk (k =

1, 2, · · ·, N) is a sum of squares of 2mk mutually independent
Gaussian RVs. Consequently, the cross-correlation coefficient
between Vk and Vj (k and j = 1, 2, · · ·, N) can be written
obtained as

ρVk,Vj
=

Cov(Vk, Vj)√
Var [Vk]Var [Vj ]

, (4)

where Var [Vk] = E
[
V 2
k

]
− E2 [Vk] is the variance of the RV

Vk and

Cov(Vk, Vj) = E [VkVj ]− E [Vk]E [Vj ] (5)

is the covariance of the RV’s Vk and Vj . Consequently

E [Vk] =

mk∑
ℓ=1

E
[
G2

Xkℓ

]
+

mk∑
ℓ=1

E
[
G2

Ykℓ

]
,

where

E
[
G2

Xkℓ

]
= E

[
σ2
k

(√
1− λ2

kXkℓ + λkX0ℓ

)2
]
=

1

2
σ2
k,

E
[
G2

Ykℓ

]
= E

[
σ2
k

(√
1− λ2

kYkℓ + λkY0ℓ

)2
]
=

1

2
σ2
k.

Therefore,

E [Vk] =

mk∑
ℓ=1

E
[
G2

Xkℓ

]
+

mk∑
ℓ=1

E
[
G2

Ykℓ

]
= mkσ

2
k, (6)

E [Vj ] =

mj∑
ℓ=1

E
[
G2

Xjℓ

]
+

mj∑
ℓ=1

E
[
G2

Yjℓ

]
= mjσ

2
j . (7)

Hence, the first term of Cov(Vk, Vj) can be written as

E [VkVj ] =

mk∑
ℓ=1

mj∑
n=1

E
[
G2

Xkℓ
G2

Xjn

]
+

mk∑
ℓ=1

mj∑
n=1

E
[
G2

Xkℓ
G2

Yjn

]
+

mk∑
ℓ=1

mj∑
n=1

E
[
G2

Ykℓ
G2

Xjn

]
+

mk∑
ℓ=1

mj∑
n=1

E
[
G2

Ykℓ
G2

Yjn

]
and since GXkℓ

and GYjn
are statistically independent and

have same statistics the above equation may be expressed as

E [VkVj ] = 2

mk∑
ℓ=1

mj∑
n=1

E
[
G2

Xkℓ
G2

Xjn

]
+ 2

mk∑
ℓ=1

E
[
G2

Xkℓ

] mj∑
n=1

E
[
G2

Yjn

]
= 2

mk∑
ℓ=1

mj∑
n=1

E
[
G2

Xkℓ
G2

Xjn

]
+

1

2
mkmjσ

2
kσ

2
j .

We invoke the result of [41, eq. (7-61)] to write

E
[
G2

Xkℓ
G2

Xjn

]
=E

[
G2

Xkℓ

]
E
[
G2

Xjn

]
+ 2E2

[
GXkℓ

GXjn

]
=

1

4
σ2
kσ

2
j + 2E2

[
GXkℓ

GXjn

]
,

by straight forward mathematical manipulations we can write

E
[
GXkℓ

GXjn

]
=
1

2
σkσj

[√
1− λ2

k

√
1− λ2

jδkjδℓn + λkλjδℓn

]
.

Accordingly, E [VkVj ] can be expressed as

E [VkVj ] =

mk∑
ℓ=1

mj∑
n=1

σ2
kσ

2
j

[√
1−λ2

k

√
1−λ2

jδkjδℓn+λkλjδℓn

]2
+mkmjσ

2
kσ

2
j . (8)

Combining the above results by substituting (6), (7) and (8)
into (5), it follows that

cov(Vk, Vj)=

mk∑
ℓ=1

mj∑
n=1

σ2
kσ

2
j

[√
1−λ2

k

√
1−λ2

jδkjδℓn+λkλjδℓn

]2
.

Since E [Vk] = mkσ
2
k and E [Vj ] = mjσ

2
j and by using

(8) with k = j and ℓ = n it it follows Var(Vk) = mkσ
4
k

and Var(Vj) = mjσ
4
j . Consequently, the cross-correlation

coefficient between Vk and Vj in (4) can be expressed as

ρVk,Vj
=

1
√
mkmj

mk∑
ℓ=1

mj∑
n=1

[√
1−λ2

k

√
1−λ2

jδkjδℓn+λkλjδℓn

]2

=


min (mk,mj)√

mkmj
λ2
kλ

2
j , k ̸= j and ℓ = n

1, k = j and ℓ = n
0, ℓ ̸= n.

(9)

It can be verified that Rℓ =
√
Vℓ (ℓ = 1, 2, · · ·, N) are N

correlated Nakagami-m RVs with PDFs given by

fRℓ
(x)=

2

Γ (mℓ)

(
mℓ

Ωℓ

)mℓ

x2mℓ−1 exp

(
−mℓ

Ωℓ
x2

)
x ≥ 0, (10)

where Ωℓ = E
[
R2

ℓ

]
= mℓσ

2
ℓ , Γ(·) is the Euler Gamma func-

tion [37, eq. (8.310-1)] and mℓ = Ω2
ℓ/E

[(
R2

ℓ − Ωℓ

)2] ≥ 0.5
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Fig. 1. Cascaded fading channel with N sub-channels.

represents the fading severity parameter. Nakagami-m PDF
can also be expressed as

fRℓ
(x) =

2x2mℓ−1

σ2mℓ

ℓ Γ (mℓ)
exp

(
−x2

σ2
ℓ

)
. (11)

The PDF of Nakagami-m RV can be reduced to the special
cases of Rayleigh distribution with (mℓ = 1) and to the one-
sided Gaussian distribution with (mℓ = 1/2).

B. Statistics of Cascaded Nakagami-m RVs

Communication technology fuels our interconnected world,
where in the last decade a new area of research has emerged
as a result of channel modeling to fit the multi-layer chan-
nel networks, known as the end-to-end compound cascaded
fading channel. Because they take us beyond the properties of
conventional one-way channel, they display remarkable effects
not found in the conventional on-way channels, such as multi-
hop relaying communication link, mobile-to-mobile fading
channel, dual-hop fading channels, radio-frequency identifi-
cation pinhole channels. For end-to-end compound cascaded
keyhole or pinhole fading channels, the correlation between
cascaded sub-channels fading may have some impacts on the
system performance. This is because faded signals terminate
and originate at the same keyhole or pinhole location.
In wireless communication links, cascaded fading channel
occurs when the transmitter-and receiver pairs experience rich
and multiple scattering and when the received signals are
engendered by the product of a bunch of rays reflected via
N scatters, but the existence of some keyholes or pinholes
still makes the transmission possible.
For cascade fading channel shown in Fig. 1, it is assumed

that each sub-channel undergoes the Nakagami-m fading with
fading coefficient Rne

jθn (n = 1, 2, · · ·, N) is characterized
with fading severity parameter mn. In Fig. 1, Rn and θn
represents the sub-channel gain and phase, respectively and n
denotes the complex envelope of the Gaussian noise process
with zero mean and N0 power spectral density. Therefore,
YN = R1 × · · · ×RN and ϕN = θ1 + · · ·+ θN represents the
end-to-end channel gain and phase, respectively. Consequently,
the end-to-end channel between the transmitter and receiver
can be modeled by the product of the fading coefficients
corresponding to each sub-channel. The product of N cor-
related non-identically distributed Nakagami-m RVs may be
expressed as

YN =

N∏
k=1

Rk. (12)

For the subsequent use we define a new random vec-

tors X0 =
[
X

(1)T
0 ,X

(2)T
0 , · · ·,X(N)T

0

]T
and Y0 =[

Y
(1)T
0 ,Y

(2)T
0 , · · ·,Y(N)T

0

]T
with the random vectors X(k)

0 =

[X01, X02, · · ·, X0mk
]
T and Y

(k)
0 = [Y01, Y02, · · ·, Y0mk

]
T

(k = 1, 2, · · ·, N). The RV’s X0ℓ and Y0ℓ (ℓ = 1, 2, · · ·,mk)
are mutually independent Gaussian random variables with
mean zero and variance equals to 1/2. The joint PDF of X(k)

0

and Y
(k)
0 is given by

f
X

(k)
0 ,Y

(k)
0

(
X

(k)
0 ,Y

(k)
0

)
=f

X
(k)
0
(X01, · · ·,X0mk

)f
Y

(k)
0
(Y01, · · ·,Y0mk

)

=
1

πmk
exp

[
−

mk∑
ℓ=1

(
X2

0ℓ + Y 2
0ℓ

)]
. (13)

Without any loss of generality we assume that m1 ≤ m2 ≤
· · · ≤ mN . Therefore, max {m1,m2, · · ·,mN} = mN . Since
the random vectors X

(k)
0 and Y

(k)
0 (k = 1, 2, · · ·, N) have

some common variables and for a purpose of the analysis, the
random vectors X0 and Y0 may be represented as X0 =
[X01, X02, · · ·, X0mN

]
T and Y0 = [Y01, Y02, · · ·, Y0mN

]
T .

Therefore, the joint PDF of X0 and Y0 can be written as

fX0,Y0
(X0,Y0) = fX0

(X01, · · ·,X0mN
) fY0

(Y01, · · ·,Y0mN
)

=
1

πmN
exp

[
−

mN∑
ℓ=1

(
X2

0ℓ + Y 2
0ℓ

)]
. (14)

In order to obtain the PDF and CDF of YN , the joint PDF
of the correlated RVs Rk(k = 1, 2, · · ·, N) must be obtained.
To this end, we first define an auxiliary RV DN , which is the
conditional PDF of YN on X0 and Y0. Then, the intended PDF
of YN can be directly obtained by averaging DN over the joint
PDF of X0 and Y0. In this case both real and imaginary parts
of the conditional PDF of the RVs Gkℓ on X0ℓ and Y0ℓ (ℓ =
1, 2, · · ·,mk) have equal variance of σ2

k

(
1− λ2

k

)
/2 and means

equal to σkλkX0ℓ and σkλkY0ℓ, respectively. Consequently,
from (3), the conditional PDF of Vk on X

(k)
0 and Y

(k)
0 (k =

1, 2, · · ·, N) follows a non-central chi-square distribution [34,
eq. (2.3-29)] that is

fQk
(v)= f

Vk|X(k)
0 ,Y

(k)
0

(
v | X(k)

0 ,Y
(k)
0

)
=

1

2Λ2
k

(
v

S2
k

) gk
2

exp

(
−S2

k + v

2Λ2
k

)
Igk

(
Sk

Λ2
k

√
v

)
, (15)

where gk = mk − 1, S2
k = σ2

kλ
2
k

∑mk

ℓ=1

(
X2

0ℓ + Y 2
0ℓ

)
,

Λ2
k = 1

2σ
2
k

(
1− λ2

k

)
and Igk is the modified Bessel function

of gkth order and first kind [38, p.p. (374)]. By using a
simple transformation of random variables, the conditional
PDF of Rk =

√
Vk on X0ℓ and Y0ℓ (ℓ = 1, 2, · · ·,mk) (i.e.,

Wk =
√
Qk) may be expressed as [34, eq. (2.3-64)]

fWk
(r)= f

Rk|X(k)
0 ,Y

(k)
0

(
r | X(k)

0 ,Y
(k)
0

)
=

1

Λ2
k

rmk

Sgk
k

exp

(
−S2

k + r2

2Λ2
k

)
Igk

(
Sk

Λ2
k

r

)
. (16)

The auxiliary RV DN (i.e. fDN
(r)=fYN |X0,Y0

(r | X0,Y0) )
can be rearranged and represented as

DN =

N∏
k=1

Wk. (17)



GHAREEB and AL-SHALALI: STATISTICS OF CASCADED NAKAGAMI-m ... 5

Now, the PDF of YN may be expressed as

fYN
(r) =

∫ ∞

−∞

∫ ∞

−∞
fDN

(r)fX0,Y0
(X0,Y0)dX0dY0, (18)

where the bold integrals above are mN -fold integrals. Follow-
ing the procedure described in [20], starting with the product
of two RVs, the PDF of D2 = W1W2 can be obtained by
employing the method of transformation for the product of
two RV’s [41], that is

fD2
(r) =

∫ ∞

−∞

1

|r2|
fW1

(
r

r2

)
fW2

(r2) dr2

=

∫ ∞

0

rm1rm2−m1−1
2

Sg1
1 Sg2

2 Λ2
1Λ

2
2

exp

(
− r2

2r22Λ
2
1

− r22
2Λ2

2

)
× exp

(
− S2

1

2Λ2
1

− S2
2

2Λ2
2

)
Ig1

(
S1

Λ2
1

r

r2

)
Ig2

(
S2

Λ2
2

r2

)
dr2

=

∫ ∞

0

4rm1rm2−m1−1
2

Sg1
1 Sg2

2 T1T2
exp

[
−
(

r2

r22T1
+

r22
T2

)]
× exp

(
−h1

m1∑
ℓ=1

(
x2
0ℓ + y20ℓ

)
− h2

m2∑
ℓ=1

(
x2
0ℓ + y20ℓ

))

× Ig1


2λ1r

√√√√m1∑
ℓ=1

(x2
0ℓ + y20ℓ)

σ1 (1− λ2
1) r2



× Ig2


2λ2r2

√√√√m2∑
ℓ=1

(x2
0ℓ + y20ℓ)

σ2 (1− λ2
2)

 dr2, (19)

where Ti = σ2
i (1 − λ2

i ) and hi = λ2
i /
(
1− λ2

i

)
. Now

by substituting (14) and (19) into (18) and with a simple
mathematical manipulation the PDF of Y2 can be expressed
as

fY2
(r) =

∫ ∞

0

∫
T

4rm1rm2−m1−1
2

Bg1
1 Bg2

2 C2E2
exp

[
−
(

r2

r22T1
+

r22
T2

)]
× 1

πm2
exp

(
−h1

2m1∑
ℓ=1

t2ℓ − (h2 + 1)

2m2∑
ℓ=1

t2ℓ

)

× Ig1

(
2λ1rB1

σ1 (1− λ2
1) r2

)
Ig2

(
2λ2r2B2

σ2 (1− λ2
2)

)
dTdr2,

(20)

where Bi =
√∑2mi

ℓ=1 t
2
ℓ , Cn =

∏n
j=1(σjλj)

gj , En =
∏n

j=1 Tj
and T = [t1, t2, · · ·, t2mN

]. In (20) the inner 2mN -fold integral
on T may be defined as∫

T

( ) dT =

∫
t1

∫
t2

· · ·
∫
t2mN

( ) dt1 dt2· · ·dt2mN
.

We can express (20) in terms of the infinite series represen-
tation for the modified Bessel function of gkth order and first
kind [34, eq. (2.3.31)] defined by

Igi(z) =

∞∑
k=0

(z/2)2k+gi

k!Γ(k + gi + 1)
, z ≥ 0. (21)

Therefore, (20) can be expressed as

fY2
(r) =

∫ ∞

0

∫
T

4rm1rm2−m1−1
2

Bg1
1 Bg2

2 C2E2
exp

[
−
(

r2

r22T1
+

r22
T2

)]
× 1

πm2
exp

(
−h1

2m1∑
ℓ=1

t2ℓ − (h2 + 1)

2m2∑
ℓ=1

t2ℓ

)

×
∞∑

k1=0

1

k1!Γ(k1 +m1)

(
λ1rB1

σ1 (1− λ2
1) r2

)2k1+g1

×
∞∑

k2=0

1

k2!Γ(k2 +m2)

(
λ2r2B2

σ2 (1− λ2
2)

)2k2+g2

dTdr2,

by performing the change of variable and after some manipu-
lations we obtain

fY2
(r) =

∫ ∞

0

∫
T

4

C2E2
exp

[
−
(

r2

r22T1
+

r22
T2

)]
× 1

πm2
exp

(
−h1

2m1∑
ℓ=1

t2ℓ − (h2 + 1)

2m2∑
ℓ=1

t2ℓ

)

×
∞∑

k1=0

∞∑
k2=0

(
2m1∑
ℓ=1

t2ℓ

)k1 (2m2∑
ℓ=1

t2ℓ

)k2

× r2k1+2m1−1r
2(k2−k1)+2(m2−m1)−1
2

×

 2∏
j=1

1

kjΓ(kj +mj)

(
λj

(1− λ2
j )σj

)2kj+gj
dTdr2.

(22)

The inner 2m2-fold integral on T may be written as

I2 =

∫ ∞

∞

∫ ∞

∞
· · ·
∫ ∞

∞

1

πm2

2∏
i=1

(2mi∑
ℓ=1

t2ℓ

)ki

exp

(
−αi

2mi∑
ℓ=1

t2ℓ

)
× dt1dt2· · ·dt2m2

, (23)

where α1 = h1 and α2 = h2 + 1. To the best of the authors’
knowledge, there is no reported analytical solution for (71).
However, following the procedure given in Appendix A, the
solution of the integral in (71) can be obtained as

I2 =
1

Γ(m1)Γ(m2 −m1)

k2∑
i2=0

(
k2
i2

)
× Γ(k1 +m1 + i2)

(1 + h1 + h2)
k1+m1+i2

Γ(k2 +m2 −m1 − i2)

(1 + h2)
k2+m2−m1−i2

.

(24)
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Therefore, one can write (22) as

fY2
(r) =

∫ ∞

0

4

C2E2
exp

[
−
(

r2

r22T1
+

r22
T2

)] ∞∑
k1=0

∞∑
k2=0

I2

×r2k1+2m1−1r
2(k2−k1)+2(m2−m1)−1
2

×

 2∏
j=1

1

kj ! Γ(kj +mj)

(
λj

(1− λ2
j )σj

)2kj+gj
dr2.

(25)

By using the relation [36, eq. (8.4.3.1)], defined by

e−z = G1,0
0,1

(
z

∣∣∣∣−0
)
, (26)

where Gm,n
p,q

(
z

∣∣∣∣arbs
)

is the Meijer G-function [37,

eq. (9.301)], then, (25) can be written as

fY2
(r) =

∫ ∞

0

4

C2E2
exp

(
− r22
T2

)
G1,0

0,1

(
r2

r22T1

∣∣∣∣−0
) ∞∑

k1=0

∞∑
k2=0

I2

× r2k1+2m1−1r
2(k2−k1)+2(m2−m1)−1
2

×

 2∏
j=1

1

kj ! Γ(kj +mj)

(
λj

(1− λ2
j )σj

)2kj+gj
 dr2.

(27)

By using the following properties [37, eq. (9.31-2) and
eq. (9.31-5)],

Gm,n
p,q

(
z−1

∣∣∣∣arbs
)

= Gn,m
q,p

(
z

∣∣∣∣1− bs
1− ar

)
, (28)

zkGm,n
p,q

(
z

∣∣∣∣ab
)

= Gm,n
p,q

(
z

∣∣∣∣k + a
k + b

)
(29)

and after making the change of variable u2 = r22 , the integral
in (27) becomes

fY2
(r) =

∫ ∞

0

2

C2E2
exp

(
−u2

T2

)
G0,1

1,0

(
u2T1
r2

∣∣∣∣1−
)

×
∞∑

k1=0

∞∑
k2=0

I2 r2k1+2m1−1u
−(k1−k2+m1−m2+1)
2

×

 2∏
j=1

1

kj ! Γ(kj +mj)

(
λj

(1− λ2
j )σj

)2kj+gj
du2.

(30)

Consequently, and with the aid of [37, eq. (7.813-1)], the
single integral in (30) can be evaluated as

fY2(r) =
2

C2E2

∞∑
k1=0

∞∑
k2=0

I2
r2k1+2m1−1

T k1−k2+m1−m2
2

×G0,2
2,0

(
E2
r2

∣∣∣∣k1 − k2 +m1 −m2 + 1, 1
−

)

×

 2∏
j=1

1

kj ! Γ(kj +mj)

(
λj

(1− λ2
j )σj

)2kj+gj
 .

(31)

After making some mathematical manipulations, (31) can be
expressed as

fY2
(r) =

2

r

∞∑
k1=0

∞∑
k2=0

I2

(
r2

E2

)k1+m1

× G0,2
2,0

(
E2
r2

∣∣∣∣k1 − k2 +m1 −m2 + 1, 1
−

)

×

 2∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 . (32)

Using (28) and (29), the PDF for the product of two arbitrarily
correlated Nakagami-m RVs may be written as

fY2
(r) =

2

r

∞∑
k1=0

∞∑
k2=0

I2 G2,0
0,2

(
r2

E2

∣∣∣∣ −M2

)

×

 2∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 , (33)

where MN = [kN +mN , kN−1 +mN−1, · · ·, k1 +m1].
By extending the analysis described above for N = 2 into the
case of N = 3, the PDF of D3 may be expressed as

fD3(r) =

∫ ∞

−∞

1

|r3|
fD2

(
r

r3

)
fW3 (r3) dr3. (34)

Now by substituting (14) and (34) into (18) and following the
same procedure for the case of N = 2, the PDF of Y3 can be
expressed as

fY3
(r) =

∫ ∞

0

∫ ∞

0

∫
T

8

C3E3
exp

[
−
(

r2

r22r
2
3T1

+
r22
T2

+
r23
T3

)]
× 1

πm3
exp

(
−h1

2m1∑
ℓ=1

t2ℓ−h2

2m2∑
ℓ=1

t2ℓ−(h3+1)

2m3∑
ℓ=1

t2ℓ

)

×
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

(
2m1∑
ℓ=1

t2ℓ

)k1(2m2∑
ℓ=1

t2ℓ

)k2(2m3∑
ℓ=1

t2ℓ

)k3

×r2k1+2m1−1 r
2(k2−k1)+2(m2−m1)−1
2

×r
2(k3−k1)+2(m3−m1)−1
3

×

 3∏
j=1

1

kj ! Γ(kj +mj)

(
λj

(1− λ2
j )σj

)2kj+gj


× dTdr2dr3. (35)

Then, the PDF of the product of three arbitrarily correlated
Nakagami-m RVs can be similarly found as

fY3(r) =
2

r

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

I3 G3,0
0,3

(
r2

E3

∣∣∣∣ −M3

)

×

 3∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 , (36)
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where by following the procedure given in Appendix A, I3
can be obtained as

I3 =
1

Γ(m1)Γ(m2 −m1)Γ(m3 −m2)

k3∑
i2=0

k2+i2∑
i3=0

(
k3
i2

)
×
(
k2 + i2

i3

)
Γ(k1 +m1 + i3)

(1 + h1 + h2 + h3)
k1+m1+i3

× Γ(k2 +m2 −m1 + i2 − i3)

(1 + h2 + h3)
k2+m2−m1+i2−i3

× Γ(k3 +m3 −m2 − i2)

(1 + h3)
k3+m3−m2−i2

.

Thus, using the same approach used above and recursively, we
can find the PDF for Y4, Y5, · · ·, YN , it results that

fYN
(r) =

2

r

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN GN,0
0,N

(
r2

EN

∣∣∣∣ −
MN

)

×

 N∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 , (37)

where as given in Appendix A, IN can be obtained as

IN = cN

kN∑
i2=0

kN−1+i2∑
i3=0

kN−2+i3∑
i4=0

· · ·
k2+iN−1∑
iN=0

×
(
kN
i2

)(
kN−1 + i2

i3

)(
kN−2 + i3

i4

)
· · ·
(
k2 + iN−1

iN

)
× Γ(k1 + n1 + iN )

µk1+n1+iN
1

Γ(k2 + n2 + iN−1 − iN )

µ
k2+n2+iN−1−iN
2

· · ·

× · · ·Γ(kN−1 + nN−1 + i2 − i3)

µ
kN−1+nN−1+i2−i3
N−1

Γ(kN + nN − i2)

µkN+nN−i2
N

with

nℓ =

{
m1 ℓ = 1
mℓ −mℓ−1 ℓ = 2, 3, . . . , N

,

µℓ = 1 +

N∑
n=ℓ

hn and cN =

N∏
ℓ=1

1

Γ(nℓ)
.

We can identify that, for a set of identical fading severity
parameter mk = m(k = 1, 2, · · ·, N), IN can be expressed as
IN = Γ−1(m)Γ(KN +m)H−(KN+m)

N with KN =
∑N

n=1 kn
and HN = 1 +

∑N
n=1 hn. For a special case of a product of

N independent Nakagami-m RVs, it can be easily shown that
IN = 1. In particular, independent Nakagami-m RVs can be
considered as special case of generalized Nakagami-m RVs
for λk = 0(k = 1, 2, · · ·, N), in this case (37) simplifies to

fYN
(r) =

2

r

N∏
j=1

Γ(mj)

GN,0
0,N

r2
N∏
j=1

mj

Ωj

∣∣∣∣ −
mN , · · ·,m1

 ,

with Ωj = mjσ
2
j , which is identical to [17, eq. (4)].

Obviously if we consider mk = 1(k = 1, 2, · · ·, N) in the
expression (37) and by using the property (29), we obtain

an expression for the PDF of the product of N arbitrarily
correlated Rayleigh RVs, hence

fYN
(r) =

2r

EN

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

GN,0
0,N

(
r2

EN

∣∣∣∣ −KN

)

×

 N∏
j=1

h
kj

j

(kj !)
2

Γ(KN + 1)H−(KN+1)
N ,

where KN = [kN , kN−1, · · ·, k1], which is equivalent to [27,
eq. (17)]. However we can consider other choices of the
parameter in order to verify our result.
Using standard definition of the cumulative distribution func-
tion (CDF), the CDF for the product of N arbitrarily correlated
Nakagami-m RVs is obtained as

FYN
(r) =

∫ r

0

fYN
(y) dy

=

∫ r

0

2

y

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN GN,0
0,N

(
y2

EN

∣∣∣∣ −
MN

)

×

 N∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 dy. (38)

Obviously, by using the change of variable x = y2, the integral
in (38) becomes

FYN
(r) =

∫ r2

0

1

x

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN GN,0
0,N

(
x

EN

∣∣∣∣ −
MN

)

×

 N∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 dx, (39)

and by the aid of [39, eq. (26)], the CDF of the product of N
arbitrarily correlated Nakagami-m RVs can be evaluated as

FYN
(r) =

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN GN,1
1,N+1

(
r2

EN

∣∣∣∣ 1
MN , 0

)

×

 N∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 . (40)

For a special case of a product of N independent Nakagami-
m RVs λk = 0(k = 1, 2, · · ·, N), with some mathematical
manipulations, it can be easily shown that (40) reduced to

FYN
(r)=

1
N∏
j=1

Γ(mj)

GN,1
1,N+1

r2 N∏
j=1

mj

Ωj

∣∣∣∣ 1
mN , · · ·,m1, 0

 ,

which is identical to the expansion for the distribution function
given by [17, eq. (7)].
For a special case of mk = 1(k = 1, 2, · · ·, N), the expression
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in (40) is reduced to the CDF of the product of N arbitrarily
correlated Rayleigh RVs, that is

FYN
(r) =

∞∑
k1=0

· · ·
∞∑

kN=0

GN,1
1,N+1

(
r2

EN

∣∣∣∣ 1
kN+1, · · ·, k1+1, 0

)

×

 N∏
j=1

h
kj

j

(kj !)2

Γ(KN + 1)H−(KN+1)
N ,

which is equivalent to [27, eq. (21)].

III. APPLICATIONS AND PERFORMANCE ANALYSIS

Consider a digitally modulated signal transmitted over
cascaded Nakagami-m fading channels. Due to the variety
of distinct environments in wireless channels, the N sub-
channels are supposed to have distinct distributions. It is
assumed that the N sub-channels are arbitrarily correlated
and non-identically distributed. Moreover, they are assumed
to have slow and flat fading. Therefore, if a signal s(t)
with an average symbol energy E is transmitted over the
cascaded channels, then the complex envelope of the received
signal can be represented as r(t) = YNe−jϕN s(t) + n(t),
where YN and ϕN represents the channel gain and channel
phase, respectively. n(t) denotes the complex envelope of
the Gaussian noise process with zero mean and N0 power
spectral density. Consequently, the instantaneous SNR can be
expressed as γ = Y 2

NE/N0 and the average SNR may be
written as

γ̄ =
E

N0
E
[
Y 2
N

]
=

E

N0
E

[
N∏

k=1

R2
k

]
. (41)

Following the procedure given in [27], we obtain the second
moment of YN with the aid of the conditional RV DN as

E
[
Y 2
N

]
=

∫
X0ℓ

∫
Y0ℓ

E
[
D2

N

]
fX0ℓ,Y0ℓ

(x0ℓ, y0ℓ)

mN∏
ℓ=1

dx0ℓ dy0ℓ

=

∫
X0ℓ

∫
Y0ℓ

E

[
N∏

k=1

W 2
k

]
fX0ℓ,Y0ℓ

(x0ℓ,y0ℓ)

mN∏
ℓ=1

dx0ℓ dy0ℓ

=

∫
X0ℓ

∫
Y0ℓ

N∏
k=1

E
[
W 2

k

]
fX0ℓ,Y0ℓ

(x0ℓ,y0ℓ)

mN∏
ℓ=1

dx0ℓdy0ℓ.(42)

It is well known that, the second moment of Wk(k =
1, 2, · · ·, N) can be obtained as [34, eq. (2.3-66)]

E
[
W 2

k

]
= σ2

kλ
2
k

mk∑
ℓ=1

(
x2
0ℓ + y20ℓ

)
+mkσ

2
k

(
1− λ2

k

)
. (43)

Consequently, substituting (43) and (14) into (42), and as a
result of some mathematical simplifications it is now possible
to write the second moment of YN in the form

E
[
Y 2
N

]
= ςN

∫
T

1

πmN
exp

(
−

2mN∑
ℓ=1

t2ℓ

)

×
N∏

k=1

[
λ2
k

2mk∑
ℓ=1

t2ℓ+mk

(
1− λ2

k

)]
dt1dt2· · ·dt2mN

,

(44)

where ςN =
∏N

n=1 σ
2
n. Depending on the fading severity

parameters, it will be suffice to find the solution of (44) in
two cases. For the case of equal fading severity parameters,
with m1 = m2 = · · · = mN = m, the second moment of YN

in (44) becomes

E
[
Y 2
N

]
=

2ςN
Γ(m)

∫ ∞

0

e−t2t2m−1
N∏

k=1

[
λ2
kt

2+m
(
1− λ2

k

)]
dt. (45)

The solution to the integral given in (45) is obtained by using
the hyper-spherical coordinates system transformation given in
Appendix A. Let u = t2, the second moment of YN in (45)
reduced to

E
[
Y 2
N

]
=

ςN
Γ(m)

∫ ∞

0

e−uum−1
N∏

k=1

[
λ2
ku+m

(
1− λ2

k

)]
du. (46)

The integral in (46) can be solved with the aid of [37,
eq. (2.323)], that is

E
[
Y 2
N

]
=

−ςN
Γ(m)

e−u

×
N+m−1∑

n=0

dn

dun

[
u(m−1)

N∏
k=1

[
λ2
ku+m

(
1− λ2

k

)]]∣∣∣∣∣
∞

u=0

=
ςN

Γ(m)

N+m−1∑
n=0

dn

dun

[
u(m−1)

N∏
k=1

[
λ2
ku+m

(
1−λ2

k

)]]∣∣∣∣∣
u=0

= AN ςN , (47)

where

AN =
1

Γ(m)

N+m−1∑
n=0

dn

dun

[
u(m−1)

N∏
k=1

[
λ2
ku+m

(
1−λ2

k

)]]∣∣∣∣∣
u=0

.

We now proceed to solve (44) in the case of unequal fading
severity parameters, with m1 < m2 < · · · < mN . In this case,
we utilize the result obtained in Appendix A and employ it
in mathematical programs such as Mathematica and Maple to
individually obtain AN for each N . It can, in fact, be shown
that the solution of the second moment of YN satisfies

E
[
Y 2
N

]
= AN ςN .

As a result of the above mentioned method in obtaining the
values of AN for different N , here and as the special cases of
interest the value of AN for N = 2, 3 and 4 may be written
as

A2 = m1λ
2
1λ

2
2 +m1m2,

A3 = 2m1λ
2
1λ

2
2λ

2
3 +m1m3λ

2
1λ

2
2 +m1m2λ

2
1λ

2
3

+m1m2λ
2
2λ

2
3 +m1m2m3,

A4 = m1(2m2 +m3 + 6)λ2
1λ

2
2λ

2
3λ

2
4 + 2m1m4λ

2
1λ

2
2λ

2
3

+ 2m1m3λ
2
1λ

2
2λ

2
4 + 2m1m2λ

2
1λ

2
3λ

2
4 + 2m1m2λ

2
2λ

2
3λ

2
4

+m1m3m4λ
2
1λ

2
2 +m1m2m4λ

2
1λ

2
3 +m1m2m3λ

2
1λ

2
4

+m1m2m4λ
2
2λ

2
3 +m1m2m3λ

2
2λ

2
4 +m1m2m3λ

2
3λ

2
4

+m1m2m3m4.

Clearly, the previous formulas of AN for N = 2, 3 and 4
are valid for both identical and non-identical fading severity
parameters. Indeed, it is possible to consider more values of
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N by the same method described above, but the present article
considers the cases for N = 2, 3 and 4. For independent
Nakagami-m RVs, by substituting λk = 0(k = 1, 2, · · ·, N)
in (44), it is easy to obtain

E
[
Y 2
N

]
=

N∏
k=1

mkσ
2
k.

A. An Infinite Series Representation for the Moment of YN

An alternative expression for the second moment of YN can
be derived in terms of an infinite-series representation. Indeed,
the nth moment of cascaded Nakagami-m fading channels
that are arbitrarily correlated and not necessarily identically
distributed may be expressed as

E [Y n
N ] =

∫ ∞

0

rnfYN
(r)dr

=

∫ ∞

0

2rn−1
∞∑

k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN GN,0
0,N

(
r2

EN

∣∣∣∣ −
MN

)

×

 N∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 dr. (48)

Let u = r2, the nth moment may be written as

E [Y n
N ] =

∫ ∞

0

u
n
2 −1

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN GN,0
0,N

(
u

EN

∣∣∣∣ −
MN

)

×

 N∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 du, (49)

with the aid of [37, eq. (7.811-4)], it is now possible to write
(49) in the form

E [Y n
N ]=E

n
2

N

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN

 N∏
j=1

Γ(kj+mj+
n
2)

kj ! Γ(kj+mj)
h
kj

j

 . (50)

In order to verify the previous result, the general moments
of the product of N independent Nakagami-m RVs, which is
given by [17, eq. (9)], can be easily obtained by substituting
λk = 0(k = 1, 2, · · ·, N) in (50). A further verification is
afforded by referring to the well known result, the area under
a valid PDF integrates to unity. Thus by substituting n = 0 in
(50), the following identity is obtained

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN

 N∏
j=1

h
kj

j

kj !

 = 1. (51)

The prove of this identity is given in Appendix B. The second
moment of cascaded Nakagami-m fading channels that are
arbitrarily correlated and not necessarily identically distributed
can by obtained by letting n = 2 in (50). Thus,

E
[
Y 2
N

]
= EN

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN

 N∏
j=1

kj+mj

kj !
h
kj

j

 . (52)

B. Statistics of the SNR

It is now possible to derive the CDF and PDF of the SNR
for arbitrarily correlated, non-identically distributed cascaded
Nakagami-m fading channels. It is well known that the CDF
of the SNR can be obtained as

Fγ(γ)=Pr

(
YN ≤

√
γ

E/N0

)
=Pr

YN ≤

√√√√γ

γ̄
AN

N∏
i=1

σ2
i


=FYN


√√√√γ

γ̄
AN

N∏
i=1

σ2
i

 . (53)

By substituting (40) into (53), the CDF of the SNR is then

Fγ(γ) =

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN GN,1
1,N+1

(
γ

γ̄

AN

PN

∣∣∣∣ 1
MN , 0

)

×

 N∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 , (54)

where PN =
∏N

j=1(1 − λ2
j ). By differentiating (54) with

respect to γ, one finds that the PDF of the SNR, γ, is

fγ(γ) =
1

2

√√√√ 1

γγ̄
AN

N∏
i=1

σ2
i fYN


√√√√γ

γ̄
AN

N∏
i=1

σ2
i

 . (55)

Substituting (37) into (55), the PDF of the SNR can be
obtained to be

fγ(γ) =
1

γ

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

GN,0
0,N

(
γ

γ̄

AN

PN

∣∣∣∣ −
MN

)

×

 N∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 IN . (56)

Using the property (29), it is now possible to write (56) in the
form

fγ(γ) =
1

γ̄

AN

PN

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN GN,0
0,N

(
γ

γ̄

AN

PN

∣∣∣∣ −JN

)

×

 N∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 , (57)

where JN = [kN +mN − 1, · · ·, k1 +m1 − 1]. Conse-
quently, with the aid of [37, eq. (7.811-4)], The nth moment
of the SNR can be obtained as

E [γn] =

(
γ̄PN

AN

)n ∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN

×

 N∏
j=1

Γ(kj +mj + n)

kj ! Γ(kj +mj)
h
kj

j

 . (58)

The mathematical expressions derived here are applicable to
the previously derived expressions in [17] and [27].
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C. Outage Probability

In a communication system, outage probability occurs when
the instantaneous SNR, γ, falls below a certain specified
threshold, γth, that is

Pout = Pr (γ ≤ γth) = Fγ(γth)

=

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN GN,1
1,N+1

(
γth
γ̄

AN

PN

∣∣∣∣ 1
MN , 0

)

×

 N∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 . (59)

For a special case of independent cascaded Nakagami-m
fading channels λk = 0(k = 1, 2, · · ·, N), with some math-
ematical manipulations, it can be easily shown that the outage
probability in (59) reduced to

Pout=
1

N∏
j=1

Γ(mj)

GN,1
1,N+1

γth
γ̄

N∏
j=1

mj

∣∣∣∣ 1
mN , · · ·,m1, 0

 ,

which is identical to the expansion given by [17, eq. (17)].

D. Average Channel Capacity

In an AWGN channel, the instantaneous capacity normal-
ized to the channel bandwidth B for a communication system
can be obtained as

Cn(γ) =
C

B
= log2(1 + γ) bit /sec/Hz. (60)

In fact, the average channel capacity in frequency non-
selective slow fading environment can be written as

C̄n =

∫ ∞

0

log2(1 + γ)fγ(γ)dγ. (61)

Referring to Meijer G-function property [36, eq. (8.4.6.5)]

log2(1 + γ) =
1

ln (2)
G1,2

2,2

(
γ

∣∣∣∣1, 11, 0

)
and by substituting (57) into (61), one finds that the average
channel capacity is

C̄n =

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN

∫ ∞

0

1

γ̄ ln (2)

AN

PN
G1,2

2,2

(
γ

∣∣∣∣1, 11, 0

)

×GN,0
0,N

(
γ

γ̄

AN

PN

∣∣∣∣ −JN

) N∏
j=1

h
kj

j

kj ! Γ(kj +mj)

 dγ.(62)

Consequently, with the aid of [37, eq. (7.811-1)], the integral
in (62) is evaluated as

C̄n =
1

γ̄ ln (2)

AN

PN

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN

×GN+2,1
2,N+2

(
1

γ̄

AN

PN

∣∣∣∣ −1, 0
JN ,−1,−1

)N∏
j=1

h
kj

j

kj ! Γ(kj+mj)

 ,

(63)

a further simplification is afforded by referring to the Meijer
G-function property in (29), thus

C̄n =
1

ln (2)

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN

×GN+2,1
2,N+2

(
1

γ̄

AN

PN

∣∣∣∣ 0, 1
MN , 0, 0

)N∏
j=1

h
kj

j

kj ! Γ(kj+mj)

 .

(64)

For a special case of independent cascaded Nakagami-m
fading channels λk = 0(k = 1, 2, · · ·, N), it can be easily
shown that the average channel capacity in (64) becomes

C̄n =
1

ln (2)

N∏
j=1

Γ(mj)

GN+2,1
2,N+2

1

γ̄

N∏
j=1

mj

∣∣∣∣ 0, 1
mN , · · ·,m1, 0, 0

 .

E. Average Bit Error Probability

The average bit error probability (BEP) of a system gives an
integrated look about its performance measure. In this section,
we derive exact expression for the average BEP of coherently
detected binary modulated signals over arbitrarily correlated
non-identically distributed cascaded Nakagami-m fading chan-
nels. We will study the effect of cascaded level, correlation
between cascaded paths and fading severity parameters on the
average BEP. In fact, the average BEP for a modulated signal
transmitted in a fading channel with AWGN may be written
as [34, eq. (13.3-4)]

Pb =

∫ ∞

0

Pb(γ)fγ(γ)dγ, (65)

where Pb(γ) is the conditional BEP with fixed γ.
It is well known that, the conditional BEP of arbitrarily
correlated binary signals with cross-correlation coefficient ρ
(ρ = −1 for antipodal BPSK and ρ = 0 for orthogonal BFSK)
may be expressed as

Pb(γ) =
1

2
erfc

(√
γ

2
(1− ρ)

)
, (66)

where erfc(·) represents the complementary error function [34,
eq. (2.2.18)]. We now proceed to find the average BEP for
binary signals. As a result of the substitution of (57) and (66)
into (65), it is now possible to write (65) in the form

Pb =
1

γ̄

AN

PN

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN

 N∏
j=1

h
kj

j

kj ! Γ(kj +mj)


×
∫ ∞

0

1

2
erfc
(√

γ

2
(1− ρ)

)
GN,0

0,N

(
γ

γ̄

AN

PN

∣∣∣∣ −JN

)
dγ,

(67)

using the relation [36, eq.(8.4.14.2)]

erfc(
√
γ) =

1√
π
G2,0

1,2

(
γ

∣∣∣∣ 1
0, 1/2

)
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and with a simple simplification it is now possible to write
(67) in the form

Pb =
1

γ̄(1−ρ)
√
π

AN

PN

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN

N∏
j=1

h
kj

j

kj ! Γ(kj+mj)


×
∫ ∞

0

G2,0
1,2

(
γ

∣∣∣∣ 1
0, 1/2

)
GN,0

0,N

(
2γ

γ̄(1−ρ)

AN

PN

∣∣∣∣ −JN

)
dγ.

(68)

The integral in (68) can be evaluated with the aid of [37,
eq. (7.811)], then

Pb =
1

γ̄(1−ρ)
√
π

AN

PN

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN

N∏
j=1

h
kj

j

kj ! Γ(kj+mj)


×GN,2

2,N+1

(
2

γ̄(1−ρ)

AN

PN

∣∣∣∣0,−1/2
JN ,−1

)
. (69)

A further simplification can be obtained by referring to the
Meijer G-function property in (29), thus

Pb =
1

2
√
π

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

IN

N∏
j=1

h
kj

j

kj ! Γ(kj+mj)


×GN,2

2,N+1

(
2

γ̄(1−ρ)

AN

PN

∣∣∣∣ 1, 1/2MN , 0

)
. (70)

To validate the obtained average bit error probability expres-
sion, consider a special case of a product of N independent
Nakagami-m RVs, λk = 0 (k = 1, 2, · · ·, N). In this case
hi = λ2

i /
(
1− λ2

i

)
= 0 and α1 = h1 = 0, α2 = h2 = 0,

· · ·, αN = hN + 1 = 1, hence IN = 1, AN =
∏N

i=1 mi and
PN = 1. Therefore (70) simplifies to

Pb =
1

2
√
π

N∏
j=1

1

Γ(mj)


×GN,2

2,N+1

(
2

γ̄(1−ρ)

N∏
i=1

mi

∣∣∣∣ 1, 1/2
mN ,mN−1, · · ·,m1, 0

)
,

which agrees with [17, eq. (22)].
For a special case of a product of N correlated Rayleigh
RVs, mi = 1 (i = 1, 2, · · ·, N) and after some mathematical
manipulations, it can be easily shown that IN is reduced to

IN = Γ(KN + 1)H−(KN+1)
N ,

where KN =
∑N

n=1 kn and HN = 1+
∑N

n=1 hn. In this case
AN and PN may be expressed as

AN =

N∑
n=0

dn

dun

[
N∏

k=1

(
1−λ2

k + λ2
ku
)]∣∣∣∣∣

u=0

and

PN =

N∏
j=1

(1− λ2
j ).

Therefore the bit error probability can be written as

Pb =
1

2
√
π

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

Γ(KN+1)H−(KN+1)
N

N∏
j=1

h
kj

j

(kj !)2


×GN,2

2,N+1

(
2

γ̄(1−ρ)

AN

PN

∣∣∣∣ 1, 1/2
kN+1, kN−1+1, · · ·, k1+1, 0

)
,

which is identical to bit error probability of binary signals
in correlated cascaded Rayleigh fading channels given in [27].

F. Computational Complexity

This paper, provides expressions for the PDF, CDF, outage
probability, average channel capacity and average bit error
probability over the generalized cascaded Nakagami-m fading
channels with the arbitrarily correlation and non-identical
fading severity parameters m. As it is common for multivariate
distributions, the statistical expressions obtained involves the
evaluation of the Meijer-G functions and the multiple infinite
series. Due to its single-fold integration representation, the
Meijer-G function has a fixed and low computational com-
plexity, and it is now a standard built-in function in well-
known mathematical software packages, such as Mathematica
and Matlab. In numerical evaluations, it may seem difficult
to compute an exact value for the multiple infinite sums,
where the computational complexity of evaluating the multiple
infinite sums grows linearly proportional to the total number
of summation terms. When this happens we may truncate the
multiple infinite sums as

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

F (· · ·) ≈
J1∑

k1=0

J2∑
k2=0

· · ·
JN∑

kN=0

F (· · ·) ,

and the number of terms needed to completely capture a
good approximate numerical value should be specified for
an acceptable tolerance. The number of truncated terms in
the infinite series J1, J2, · · ·, JN , depends on the software
precision and on the values of the fading severity parameters,
the correlation coefficient and the number of cascaded sub-
channels N . Indeed, the larger the value of the cascaded sub-
channels N , the larger the number of terms into the truncated
series required to be represented to provide an acceptable
tolerance.

The values of the required truncation terms Ji of the
ith sum (i = 1, 2, · · ·, N) required to maintain an accept-
able tolerance of 1 × 10−9 for fading severity parameters
m = (m1,m2, · · ·,mN ) and correlation coefficient parameters
λ = (λ1, λ2, · · ·, λN ) are tabulated in Tables I-VI. The
required truncation terms Ji are computed for the average
bit error probability expression given in (70), the outage
probability expression given in (59) and the average channel
capacity expression given in (64). Moreover, the truncation
terms of the mentioned expressions are computed for a single
value of the average SNR/bit, with the average SNR/bit equals
to 15 dB and 30 dB respectively.
Table I and Table II shows the truncation order Ji of the ith
sum for the average bit error probability expression given in
(70) with different fading severity parameters m and different
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TABLE I
VALUES OF Ji FOR DIFFERENT CASCADED LEVEL N WITH

m = (m1,m2,m3) AND λ = (λ1, λ2, λ3) REQUIRED TO MAINTAIN AN
ACCEPTABLE TOLERANCE OF 1× 10−9 FOR THE AVERAGE BEP.

Average SNR/bit γ̄ = 15dB
m=(0.5,1,2) m=(0.5,1,2)

λ = (
√
0.5,

√
0.5,

√
0.5) λ = (

√
0.8,

√
0.8,

√
0.8)

N J1 J2 J3 N J1 J2 J3
1 6 - - 1 10 - -
2 22 22 - 2 62 62 -
3 27 27 27 3 78 78 78

TABLE II
VALUES OF Ji FOR DIFFERENT CASCADED LEVEL N WITH

m = (m1,m2,m3) AND λ = (λ1, λ2, λ3) REQUIRED TO MAINTAIN AN
ACCEPTABLE TOLERANCE OF 1× 10−9 FOR THE AVERAGE BEP.

Average SNR/bit γ̄ = 30dB
m=(0.5,1,2) m=(0.5,1,2)

λ = (
√
0.5,

√
0.5,

√
0.5) λ = (

√
0.8,

√
0.8,

√
0.8)

N J1 J2 J3 N J1 J2 J3
1 5 - - 1 7 - -
2 21 21 - 2 61 61 -
3 26 26 26 3 77 77 77

correlation coefficient parameters λ. The number of truncated
terms are computed for a single value of the average SNR/bit,
where the SNR/bit equals to 15 dB and 30 dB respectively.
It is observed that, for the single value of a bit signal-to-noise
ratio ranging from 15dB to 30dB, the nested infinite sums in
the average bit error probability expression converge after the
27th term when m = (0.5, 1, 2) and λ = (

√
0.5,

√
0.5,

√
0.5).

While for the same value of m = (0.5, 1, 2) but with different
λ = (

√
0.8,

√
0.8,

√
0.8), the nested infinite sums in the bit

error probability expression converge after the 78th term.
In the computation of the outage probability expression given
in (59), Table III and Table IV shows the truncation order Ji
of the ith sum for different fading severity parameters m and
correlation coefficient parameters λ, In Table III and Table IV
the number of truncated terms are computed for a threshold of
γth = 3 and a single value of the average SNR/bit equals to 15
dB and 30 dB respectively. It is observed that, for the single
value of γ̄ ranging from 15dB to 30dB, the nested infinite
sums in the outage probability expression converge after the
29th term when m = (1, 2, 3) and λ = (

√
0.5,

√
0.5,

√
0.5).

While for the same value of m = (1, 2, 3) but with different
λ = (

√
0.8,

√
0.8,

√
0.8), the nested infinite sums in the outage

probability expression converge after the 83th term.
In the computation of the average channel capacity expression
given in (64), Table V and Table VI shows the truncation
order Ji of the ith sum for different fading severity parameters
m and correlation coefficient parameters λ. In Table V and
Table VI the number of truncated terms are computed for a
single value of the average SNR/bit equals to 15 dB and 30
dB respectively. It is observed that, for the single value of γ̄
ranging from 15dB to 30dB, the nested infinite sums in the
average channel capacity expression converge after the 35th
term when m = (0.5, 1, 1.5) and λ = (

√
0.5,

√
0.5,

√
0.5).

While for the same value of m = (0.5, 1, 1.5) but with
different λ = (

√
0.8,

√
0.8,

√
0.8), the nested infinite sums

in the average channel capacity expression converge after the
114th term.

TABLE III
VALUES OF Ji FOR DIFFERENT CASCADED LEVEL N WITH

m = (m1,m2,m3) AND λ = (λ1, λ2, λ3) REQUIRED TO MAINTAIN AN
ACCEPTABLE TOLERANCE OF 1× 10−9 FOR THE OUTAGE PROBABILITY.

γth = 3 dB, γ̄ = 15 dB
m=(1,2,3) m=(1,2,3)

λ = (
√
0.5,

√
0.5,

√
0.5) λ = (

√
0.8,

√
0.8,

√
0.8)

N J1 J2 J3 N J1 J2 J3
1 6 - - 1 10 - -
2 25 25 - 2 70 70 -
3 29 29 29 3 83 83 83

TABLE IV
VALUES OF Ji FOR DIFFERENT CASCADED LEVEL N WITH

m = (m1,m2,m3) AND λ = (λ1, λ2, λ3) REQUIRED TO MAINTAIN AN
ACCEPTABLE TOLERANCE OF 1× 10−9 FOR THE OUTAGE PROBABILITY.

γth = 3 dB, γ̄ = 30 dB
m=(1,2,3) m=(1,2,3)

λ = (
√
0.5,

√
0.5,

√
0.5) λ = (

√
0.8,

√
0.8,

√
0.8)

N J1 J2 J3 N J1 J2 J3
1 5 - - 1 8 - -
2 24 24 - 2 69 69 -
3 27 27 27 3 81 81 81

IV. NUMERICAL RESULTS

In this section, numerical results verified by Monte Carlo
simulation for the probability density function, Outage prob-
ability verses average SNR γ̄, average channel capacity
in (bit/sec/Hz) and average bit error probability are pre-
sented. Across this section, m = [m1 m2 · · · mN ],
λ = [λ1 λ2 · · · λN ] and σ2 = [σ2

1 σ2
2 · · · σ2

N ] are used
as representations for the sets of {mi}, {λi} and {σ2

i },
respectively. The impact of severity parameter m on the PDF
of double cascaded Nakagami-m fading channels (N = 2)
with the same correlations parameters λ = [

√
0.5,

√
0.5] is

illustrated in Fig. 2. It is obvious that as the value of m
increases, the PDF will be more spread and the tails decline
rates will be reduced. As a special case, the PDF of double
Rayleigh fading channels is illustrated with m = [1, 1], which
has more severity than the other distributions. In Fig. 3, the
impact of correlation between fading channels for N = 2
with identical severity parameters m, i.e., m = [2, 2] and
non-identical severity parameters m, i.e., m = [2, 3] , and
with λ = [0, 0], λ = [

√
0.5,

√
0.5] and λ = [

√
0.8,

√
0.8]

is illustrated. As observed in both scenarios, it is clear that,
as the correlation parameters {λi} increase, the PDF area
will be shifted towards the origin with less value of peaks
and slower tails decline rates. In Fig. 4, the impact of the
fading parameters σ on the PDF of cascaded Nakagami-m
fading channels for N = 3 and with σ2 = [0.3, 0.3, 0.3],
σ2 = [0.5, 0.5, 0.5] and σ2 = [0.5, 1, 1.5] is illustrated. The
correlation and fading severity parameter are the same for each
σ, i.e., λ = [

√
0.3,

√
0.4,

√
0.5] and m = [1, 2, 3]. As noticed,

the more values of σ2 are, the more spread the PDF is.
Fig. 5 illustrates the outage probability for uncorrelated

Nakagami-m fading channels for different cascaded-levels
N = {1, 2, 3, 4}, different severity parameters m, and with the
same threshold γth = 3 for each cascaded-level. For a certain
cascaded-level, it is noticeable that the increase of the values
of severity parameters m will cause the outage probability
to be decreased. Also, for certain fading parameters, as the
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TABLE V
VALUES OF Ji FOR DIFFERENT CASCADED LEVEL N WITH

m = (m1,m2,m3) AND λ = (λ1, λ2, λ3) REQUIRED TO MAINTAIN AN
ACCEPTABLE TOLERANCE OF 1× 10−9 FOR THE AVERAGE CHANNEL

CAPACITY.

γ̄ = 15 dB
m=(0.5,1,1.5) m=(0.5,1,1.5)

λ = (
√
0.5,

√
0.5,

√
0.5) λ = (

√
0.8,

√
0.8,

√
0.8)

N J1 J2 J3 N J1 J2 J3
1 28 - - 1 80 - -
2 32 32 - 2 95 95 -
3 35 35 35 3 112 112 112

TABLE VI
VALUES OF Ji FOR DIFFERENT CASCADED LEVEL N WITH

m = (m1,m2,m3) AND λ = (λ1, λ2, λ3) REQUIRED TO MAINTAIN AN
ACCEPTABLE TOLERANCE OF 1× 10−9 FOR THE AVERAGE CHANNEL

CAPACITY.

γ̄ = 30 dB
m=(0.5,1,1.5) m=(0.5,1,1.5)

λ = (
√
0.5,

√
0.5,

√
0.5) λ = (

√
0.8,

√
0.8,

√
0.8)

N J1 J2 J3 N J1 J2 J3
1 29 - - 1 82 - -
2 32 32 - 2 96 96 -
3 35 35 35 3 114 114 114

value of cascaded-level increases, the outage probability will
increase too. Fig. 6 shows the impact of correlation on the
outage probability for correlated cascaded Nakagami-m fading
channels with different cascaded-levels N . It is obvious that
for each cascaded-level value, as the values of correlation
parameters increase, the outage probability will be increased
considerably.

In Figs. 7 and 8, the impact of cascaded-level N with
different correlation parameters on the average channel ca-
pacity in bit/sec/Hz is illustrated. Fig. 7 shows the impact
of cascaded-level with N = {1, 2, 3, 4} on the average
channel capacity of uncorrelated cascaded Nakagami-m fading
channels for different values of severity parameters m. As
seen, for a certain cascaded-level N , as the values of fading
severity parameters m increase, the average channel capacity
increases too. Furthermore, as the value of cascaded-level N
increases, the average channel capacity will be decreased. Fig.
8 shows the impact of correlation on the average channel
capacity of cascaded Nakagami-m fading channels. Obviously,
for a certain cascaded-level N , and with the same severity
parameters m, the increasing of correlation parameters will
cause the average channel capacity to be decreased.

Figs. 9–12 show the impact of cascaded-level values N and
correlation parameters on the average probability of a bit in
error for coherent detected BPSK and BFSK. In Figs. 9 and
10 , the impact of severity parameters m and cascaded-levels
N on the probability of a bit in error versus the average SNR
γ̄ of uncorrelated cascaded Nakagami-m fading channels for
coherent detected BPSK and BFSK is illustrated. As noticed,
for the same cascaded-level N , as the severity parameters m
increase, there is a decrease in the average probability of bit
in error. The impact of correlation parameters on the average
probability of a bit in error for coherent detected BPSK and
BFSK signals is illustrated in Figs. 11 and 12. It is obvious
that for the same cascaded-level N and with the same severity
parameters m, as the correlation parameters increase, the
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√
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average probability of bit in error will also increase. Finally,
it can be seen that for the same cascaded fading channels
and with the same fading and correlation parameters, BPSK
scheme outperforms BFSK scheme.

V. CONCLUSION

In this paper, statistics of the cascaded Nakagami-m fad-
ing channels with arbitrary correlation were presented. The
compound end-to-end cascaded channels are constructed as
the product of N arbitrarily correlated Nakagami-m RVs that
are not necessarily identically distributed. Novel expressions
for the PDF, CDF, and the n-th moment of the cascaded
channels were derived in terms of the Meijer G-function. Also,
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the PDF, CDF, and the n-th moment of the received instan-
taneous SNR over slow and flat fading compound channels
were obtained. Furthermore, to examine the performance over
the compound channels, outage probability, average channel
capacity, and average bit error probability for coherently
detected binary modulation schemes were studied. Finally,
numerical results for the derived expressions were illustrated
and validated through Monte-Carlo simulations. It was shown
that by increasing the value of the cascaded-level N the
system performance will be degraded. As expected, this is
because the transmitted signal undergoes more severity than in
the conventional one-way wireless channels. Also, the results
have shown that as the correlation between the compound
channels increases, the performance of the system will be
worse. Further research on this topic could include studying
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Fig. 6. Outage Probability for correlated cascaded Nakagami-m fading chan-
nels for different cascaded-levels N = 1, 2, 3, 4 with γth = 3, different
correlation parameter λ and different severity fading parameters m.
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the performance of this communication scenario with the use
of multiple communication users, and might explore many
diversity and channel coding schemes in order to mitigate
fading in such channels.

APPENDIX A
EVALUATION OF IN

The main problem in this section is to find the value of IN ,
where IN is a 2mN -fold integral which may be defined as

IN =

∫ ∞

∞

∫ ∞

∞
· · ·
∫ ∞

∞

1

πmN

N∏
i=1

(2mi∑
ℓ=1

t2ℓ

)ki

exp

(
−αi

2mi∑
ℓ=1

t2ℓ

)
× dt1dt2· · ·dt2mN

. (71)
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In evaluating the integral in (71), the value of IN will be
obtained first for N = 2, then for large value of N . Let N = 2,
with a straightforward mathematical manipulation, I2 can be
written as

I2 =

∫ ∞

∞

∫ ∞

∞
· · ·
∫ ∞

∞

1

πm1

1

πm2−m1
zk1
1 (z1 + z2)

k2

× e−(α1+α2)z1e−α2z2dt1dt2· · ·dt2m2
, (72)

where z1 =
∑2m1

ℓ=1 t2ℓ and z2 =
∑2m2

ℓ=2m1+1 t
2
ℓ . Apply the

binomial series

(a+ b)n =

n∑
i=0

(
n

i

)
aibn−i (73)
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to the quantity (z1 + z2)
k2 in (72), then I2 can be expressed

as the product of two sets of separate integrals, that is,

I2 =

k2∑
i2=0

(
k2
i2

)∫ ∞

∞
· · ·
∫ ∞

∞

1

πm1
zk1+i2
1 e−(α1+α2)z1dt1· · ·dt2m1︸ ︷︷ ︸

G1

×
∫ ∞

∞
· · ·
∫ ∞

∞

1

πm2−m1
zk2−i2
2 e−α2z2dt2m1+1· · ·dt2m2︸ ︷︷ ︸

G2

=

k2∑
i2=0

(
k2
i2

)
G1G2. (74)

In evaluating the multi-integrals G1 and G2 in (74), hyper-
spherical coordinate system transformation [40] will be used.
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Apply transformation to G1, the variables may be written as

t1 = τ cos(θ1)

t2 = τ sin(θ1) cos(θ2)

t3 = τ sin(θ1) sin(θ2) cos(θ3)

...
t2m1−1 = τ sin (θ1) sin (θ2)· · · cos (θ2m1−1)

t2m1 = τ sin (θ1) sin (θ2)· · · sin (θ2m1−1). (75)

Then, τ2 =
∑2m1

ℓ=1 t2ℓ and the Jacobian of the transformation
can be evaluated as

|J | = τ2m1−1 sin2m1−2 (θ1) sin
2m1−3 (θ2) · · · sin (θ2m1−2) .

Hence, it is now possible to write G1 in the form

G1 =

∫ ∞

0

∫ π

0

· · ·
∫ π

0

∫ 2π

0

1

πm1
τ2(k1+i2)+2m1−1e−µ1τ

2

× sin2m1−2 (θ1) sin
2m1−3 (θ2) · · · sin (θ2m1−2)

× dθ1dθ2· · ·dθ2m1−2dθ2m1−1dτ, (76)

where µ1 = α1 + α2 = 1+ h1 + h2. The inner integrals over
the angles θi for i = 1, 2, · · ·, 2m1 − 1, can be evaluated by
simple induction until the general result is revealed. Thus,

G1 =
2

Γ(m1)

∫ ∞

0

τ2(k1+i2)+2m1−1e−µ1τ
2

dτ. (77)

Now let v = τ2 and with the aid of [37, eq. (3.351-3)], G1 in
(77) reduces to

G1 =
1

Γ(m1)

Γ(k1 +m1 + i2)

(1 + h1 + h2)
k1+m1+i2

. (78)

The same method as that described above in evaluating G1

is applied to evaluate the 2 (m2 −m1)-fold integral in G2.
Therefore, G2 can be expressed by

G2 =
1

Γ(m2 −m1)

Γ(k2 +m2 −m1 − i2)

(1 + h2)
k2+m2−m1−i2

. (79)

Substituting G1 and G2 in (74) yields

I2 =
1

Γ(m1)Γ(m2 −m1)

k2∑
i2=0

(
k2
i2

)
× Γ(k1 +m1 + i2)

(1 + h1 + h2)
k1+m1+i2

Γ(k2 +m2 −m1 − i2)

(1 + h2)
k2+m2−m1−i2

.

As before, let N = 3 and with some mathematical manipula-
tion, I3 can be written as

I3 =

∫ ∞

∞

∫ ∞

∞
· · ·
∫ ∞

∞

1

πm1

1

πm2−m1

1

πm3−m2
zk1
1 (z1 + z2)

k2

× (z1 + z2 + z3)
k3 e−(α1+α2+α3)z1e−(α2+α3)z2e−(α3)z3

× dt1dt2· · ·dt2m3
, (80)

where z3 =
∑2m3

ℓ=2m2+1 tℓ
2, α1 = h1, α2 = h2 and α3 =

h3 + 1. Apply the binomial series expansion to the quantities
(z1 + z2)

k2 and (z1 + z2 + z3)
k3 in (80), then I3 can be

expressed as the product of three sets of separate integrals,
that is,

I3 =

k3∑
i2=0

k2+i2∑
i3=0

(
k3
i2

)(
k2 + i2

i3

)
×
∫ ∞

∞
· · ·
∫ ∞

∞

1

πm1
zk1+i3
1 e−(α1+α2+α3)z1dx1· · ·dx2m1︸ ︷︷ ︸

A1

×
∫ ∞

∞
· · ·
∫ ∞

∞

1

πm2−m1
zk2+i2−i3
2 e−(α2+α3)z2dx2m1+1· · ·dx2m2︸ ︷︷ ︸

A2

×
∫ ∞

∞
· · ·
∫ ∞

∞

1

πm3−m2
zk3−i2
3 e−α3z3dx2m2+1· · ·dx2m3︸ ︷︷ ︸

A3

=

k3∑
i2=0

k2+i2∑
i3=0

(
k3
i2

)(
k2 + i2

i3

)
A1A2A3. (81)

The same method as that described in evaluating G1 is applied
to evaluate A1, A2 and A3. Therefore, these expressions
reduce to

A1 =
1

Γ(m1)

Γ(k1 +m1 + i3)

(1 + h1 + h2 + h3)
k1+m1+i3

,

A2 =
1

Γ(m2 −m1)

Γ(k2 +m2 −m1 + i2 − i3)

(1 + h2 + h3)
k2+m2−m1+i2−i3

,

A3 =
1

Γ(m3 −m2)

Γ(k3 +m3 −m2 − i2)

(1 + h3)
k3+m3−m2−i2

.

As a result, it is now possible to write (81) in the form

I3 =
1

Γ(m1)Γ(m2 −m1)Γ(m3 −m2)

k3∑
i2=0

k2+i2∑
i3=0

(
k3
i2

)
×
(
k2 + i2

i3

)
Γ(k1 +m1 + i3)

(1 + h1 + h2 + h3)
k1+m1+i3

× Γ(k2 +m2 −m1 + i2 − i3)

(1 + h2 + h3)
k2+m2−m1+i2−i3

Γ(k3 +m3 −m2 − i2)

(1 + h3)
k3+m3−m2−i2

.
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Consequently, using the same approach described above re-
cursively. It can, in fact, be shown that the solution of IN in
(71) satisfies

IN = cN

kN∑
i2=0

kN−1+i2∑
i3=0

kN−2+i3∑
i4=0

· · ·
k2+iN−1∑
iN=0

×
(
kN
i2

)(
kN−1 + i2

i3

)(
kN−2 + i3

i4

)
· · ·
(
k2 + iN−1

iN

)
× Γ(k1 + n1 + iN )

µk1+n1+iN
1

Γ(k2 + n2 + iN−1 − iN )

µ
k2+n2+iN−1−iN
2

· · ·

× · · ·Γ(kN−1 + nN−1 + i2 − i3)

µ
kN−1+nN−1+i2−i3
N−1

Γ(kN + nN − i2)

µkN+nN−i2
N

,

with

nℓ =

{
m1 ℓ = 1
mℓ −mℓ−1 ℓ = 2, 3, . . . , N

,

µℓ = 1 +

N∑
n=ℓ

hn and cN =

N∏
ℓ=1

1

Γ(nℓ)
.

APPENDIX B
VERIFICATION OF THE IDENTITY (51)

The main problem in this appendix is to verify the identity
given by (51). Using the integral definition of IN given by
(71), then, (51) can be expressed as

1
?
=

1

πmN

∫ ∞

∞

∫ ∞

∞
· · ·
∫ ∞

∞

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kN=0

×
N∏
j=1

[
zj

kje−αjzj
h
kj

j

kj !

]
dt1dt2· · ·dt2mN

, (82)

where zj =
∑2mj

ℓ=1 t2ℓ . The nested sum in (82) can be
reorganized, therefore, (82) can be expressed as

1
?
=

1

πmN

∫ ∞

∞

∫ ∞

∞
· · ·
∫ ∞

∞

×
N∏
j=1

e−αjzj

∞∑
kj=0

(zjhj)
kj

kj !

 dt1dt2· · ·dt2mN
. (83)

Obviously, the infinite series in (83) represents the Taylor
series expansion of exponential function [37, eq. (1.211-1)],
thus

1
?
=

1

πmN

∫ ∞

∞

∫ ∞

∞
· · ·
∫ ∞

∞

N∏
j=1

[
e(hj−αj)zj

]
dt1dt2· · ·dt2mN

. (84)

Since α1 = h1, α2 = h2, · · ·, αN = hN + 1, therefore, (84)
reduce to

1
?
=

1

πmN

∫ ∞

∞

∫ ∞

∞
· · ·
∫ ∞

∞
e−zNdt1dt2· · ·dt2mN

. (85)

Similar to the procedure of evaluating G1 in appendix A, we
can express (85) as

1
?
=

2

Γ(mN )

∫ ∞

0

τ2mN−1e−τ2

dt. (86)

Let u = τ2 and with the aid of [37, eq. (3.351-3)], the equality
is verified.
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