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An Energy-Optimization Topology Control for
Three-Dimensional Wireless Sensor Networks

Mason Thammawichai and Thiansiri Luangwilai

Abstract—Energy optimization routing protocol is considered
an essential problem in wireless sensor networks (WSNs) as it
can affect the network lifetime. Most of the existing routing
algorithms are designed for two-dimensional networks, which
cannot be transferred to three-dimensional WSNs. Due to a lack
of knowledge about the third dimension, 2D routing algorithms
perform badly in a real-life 3D environment such as a hill, an
urban area, an underground area, an underwater area, and so
forth. These networks also suffer from problems such as routing
stretch, energy efficiency, and load balancing. Therefore, in this
paper, a mixed integer linear programming is formulated as an
optimal WSN topology control problem to address the energy op-
timization routing problem in 3D terrain. The proposed method
is a self-organized network that uses clustering and sleep/wake-up
schemes to maximize the network lifetime and minimize energy
consumption. Simulations revealed that our algorithm is robust to
various terrains and significantly increases the network lifetime
when compared to a well-known protocol, i.e., the multi-hop low
energy adaptive clustering hierarchy (LEACH), with an improved
average of 44.94 %. The results also suggested that the energy
balancing strategy provided better solutions than the minimizing
total energy scheme due to the optimal load balancing scheme of
the cluster head selection at each decision round. Furthermore,
our global optimal solutions can serve as a benchmark for all
heuristic algorithms. Though the number of variables in our
optimization problem grows nonlinearly with the number of
sensor nodes, the computation time is rather practical as the
problem is linear.

Index Terms—Energy-efficiency, optimization, topology con-
trol, WSN.

I. INTRODUCTION

W IRELESS sensor networks (WSN) have been a promis-
ing technology trend in the last decade. A smart sensor

node that is capable of sensing data, processing informa-
tion, and communicating is in demand for different applica-
tions such as environmental monitoring, security surveillance,
threat detection, smart agriculture monitoring, natural disaster
warning systems, etc. There are two types of WSN, i.e., a
heterogeneous WSN that is composed of different types of
sensor nodes and a homogeneous WSN that has the same
type of sensor nodes. Sensor nodes are usually deployed
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in harsh environments, where they stay at fixed locations.
However, in order to enhance network performances such as
coverage, connectivity, and robustness, mobile nodes, which
are movable nodes, can be deployed. Depending on the sensing
model, the WSN is classified as a directional WSN or an
omnidirectional WSN. For directional WSN, a sensor node can
detect a particular direction, usually represented as a cone. The
omnidirectional node can detect in all directions with some
sensing radius, which is often modeled by a circle or a sphere.

The most fundamental problem in WSN is the coverage
problem; that is, trying to maximize the coverage area of a
given area of interest with a minimum number of sensor nodes.
There are several factors that relate to coverage, i.e., network
connectivity and network lifetime. Network connectivity refers
to the capability of routing information from sensor nodes to
a sink node [1]. If the sensed data cannot reach the sink node,
then there is no benefit of coverage. Similarly, because the
energy stored in sensor nodes is limited, being able to maintain
coverage requires an energy-efficient scheme. In general, there
are two approaches to solving the coverage problem in WSN.
The first is based on deployment technique, and the second
is based on metaheuristic algorithms. WSN deployment can
be classified as either random or deterministic. Deterministic
deployment methods try to precompute the sensors’ positions
to accomplish the desired outcomes.

There are various deployment techniques for WSN cov-
erage. Abidin et al. [2] proposed a virtual force algorithm
to make decisions on sensor positions and the direction of
each sensor node. The drawback of the algorithm is that
it is complex, and the sink node requires high processing
power. Al-turjman et al. [3] applied a grid-based technique
to determine the locations of the sensor nodes on different
shapes such as rectangular, triangular, and hexagon. There is
some work that is based on computational geometry, such as
Voronoi-based algorithms [4], [5]. Gupta et al. [6] presented
a genetic algorithm to provide an optimal solution for K-
connectivity relay node positioning. The results illustrated that
the genetic algorithm is superior to the greedy algorithm.
Gupta et al. [7] applied a genetic algorithm to solve a node
placement problem in target-based wireless sensor networks.
The authors in [8] proposed a hybrid algorithm that is based
on a gradient method and a simulated annealing approach to
solve blanket and barrier coverage problems. Particle swarm
optimization (PSO) technique is applied to solve a hetero-
geneous sensor deployment in three-dimensional space in [9],
where the objectives are to maximize the network lifetime and
coverage. A more thorough survey on deployment techniques
in WSN can be found in [1].
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Another challenge in the WSN research problem is a routing
problem, in which the flow of data from sensor nodes to
sink nodes is determined with the objective of minimizing
energy consumption and maximizing the network lifetime.
For this work, we will only consider the routing protocols
in the network layer, which are responsible for network
topology control and transmission plans. Much work has been
proposed to address these problems, which we can categorize
as flat networks, hierarchical networks, and location-based
networks. In flat protocols, the sink node sends queries to a
particular region and waits for the data from sensor nodes to
be broadcast. The first flat network protocol is SPIN (Sensor
Protocols for Information via Negotiation) [10], which infor-
mation among sensors is disseminated in order to conserve
energy consumption. Ye et al. [11] proposed a minimum cost
forwarding algorithm (MCFA) based on a cost field approach
to find the optimal cost from sensor nodes to sink. Schurgers
and Srivastava [12] presented a gradient-based routing (GBR)
based on an energy histogram with different data dissemination
techniques to reduce energy consumption. In the work of Shah
and Rabaey [13], an energy-aware routing (EAR) protocol
is proposed to enhance network lifetime. A sub-optimal path
based on probability is chosen so that the energy dissipation
is more balanced. In general, flat network routing consumes
more energy because the sensor node has to transmit the data
to the sink node regardless of the distance between them.

Unlike flat routing, hierarchical routing segregates the net-
work into multiple clusters, with each cluster composed of
a cluster head (CH) and member nodes in order to mini-
mize the communication distance. Generally, it consists of
two phases, i.e., a setup phase in which cluster head node
selection is performed and a steady state phase in which
network routing is calculated. The most classical hierarchical
based routing protocol is the low energy adaptive clustering
hierarchy (LEACH) protocol [14]. In this protocol, a specific
number of cluster heads are selected at random to evenly
distribute the load among nodes. Data fusion processes have
also been integrated in order to reduce the transmitted infor-
mation. Asvial et al. [15] extended the LEACH protocol by
dividing the region for cluster head selection. This approach
improves the distribution of the cluster heads over the region.
Lindsey and Raghavendra [16] presented power-efficient gath-
ering in the sensor information systems (PEGASIS) protocol,
which is an improvement over LEACH. The protocol forms a
chain connecting each sensor node with the closet node until
reaching the sink node in a greedy fashion. After that, there
are a number of LEACH-based protocols in the literature.
Examples of such work are [17]–[22]. Various protocols
are based on multi-hop LEACH, aiming to improve energy
efficiency [23]–[26]. More details on energy-aware wireless
sensor network routing protocols can be found in [27].

Location-based routing protocols use information about the
location of nodes provided by some localization techniques
such as received signal strength (RSSI), link quality indica-
tors (LQI) or the global positioning system (GPS). Exam-
ples of location-based routing algorithms are [28]–[30]. An-
other energy-saving technique commonly applied to WSN is
sleep/wake-up schemes [31]. The basic concept of sleep/wake-

up protocols is to schedule the wireless sensor node into a
sleep mode during the inactive period and a wake-up mode
during the active period, i.e., when it is receiving and transmit-
ting data. Duty cycle adjustment and topology control can be
used to implement this scheme. The duty cycle scheme turns
off the sensor node most of the time and wakes it up when
needed. However, this can lead to data latency problems [32].
The topology control technique determines the state of each
node as an active mode or an inactive (sleep) mode [33].

Some of the work utilizes an optimization-based routing
approach. Ke et al. [34] proposed a nonlinear programming
method to solve a relay node selection problem. Elhabyan et
al. [35] formulated a multi-objective optimization to address
the clustering and routing problems. The optimization prob-
lem is then solved by multi-objective evolutionary algorithms
(MOEA). Several studies are based on genetic algorithms.
The authors in [36] present a genetic algorithm to determine
the cluster heads in the LEACH-C routing protocols. Liu
and Ravishankar [37] proposed an adaptive protocol based
on LEACH to search for optimal cluster heads. A genetic
algorithm based energy efficient clusters (GABEEC) protocol
is proposed in [38] to maximize the network lifetime. In
this work [39], a hybrid optimization model based on the
cuckoo search algorithm and rider optimization algorithm is
proposed to select the cluster heads, aiming to minimize
the energy consumption. Mehta and Saxena [40] presented a
multi-objective-based sailfish optimizer (SFO) for routing and
clustering problems. The objectives are to minimize energy
consumption and reduce the number of dead nodes in the
network. It should be noted that genetic algorithms are meta-
heuristics that often provide local optimal solutions, i.e., not
the global optimal solution.

Most of the existing work in this area is designed for two-
dimensional networks, which might not be applicable to three-
dimensional networks in the real world. Only a little work has
been done to address the WSN problems in a 3D environment.
To solve the deployment of sensors in 3D terrain, Temel et
al. [41] proposed a cat swarm optimization with a wavelet
transform. The Bresenham’s line of sight is adopted to provide
constraints on sensing models in 3D terrain. Pan et al. [42]
addresses the 3-D node coverage problem of WSN using
a meta-heuristic approach called the Black Hole Algorithm.
Examples of the studies on a clustering routing problem in a
3D environment are [43]–[45]. In [46], an adaptive clustering
energy-optimization routing protocol for 3D WSN is proposed.
The work is also considered an unreliable channel in the
network.

In this work, we address the energy-optimization routing
problem in a 3D environment. Our work is based on the work
of Thammawichai et al. [47], in which a UAV network is
considered. Here, we assume that there is a single target area
of coverage where nodes are randomly deployed in three-
dimensional terrain. The nodes are static, that is, at a fixed
location within the ROI. Our network is a cluster-based multi-
hop WSN with multiple sink nodes. Unlike all others in the
literature, which only try to solve for optimal clusters, our
work also optimally solves for the connections among nodes in
the network with a realistic channel model. Moreover, we are
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the first to combine clustering and sleep/wake protocols into
our energy-saving schemes. Specifically, this paper proposes
a 3D WSN topology control algorithm using a mathematical
optimization method. The objectives are to guarantee K-
connectivity for each sink node and minimize the total power
consumption in order to maximize the network lifetime. The
main contributions of this paper are as follows:

1) An optimal multi-hop self-organized network topology
control and node scheduling strategy is proposed for
3D WSN. The objectives are to minimize energy con-
sumption and maximize the network lifetime. The WSN
dynamic is represented by a state vector of node energy
levels. The control inputs are the communication link
matrix and the energy consumption at each decision
round.

2) The scheme combines two energy-saving techniques,
i.e., clustering and sleep/wake-up protocols at the net-
work level, to reduce energy consumption. Precisely,
at each decision round, the algorithm decides on the
optimal number of wake-up nodes and their routing
to guarantee K-connectives at each sink node with
minimum energy consumption.

3) Our formulation is a mixed integer linear programming.
The solutions obtained are global optimal, which is a
benchmark for all heuristic algorithms. Moreover, our
scheme is adaptive and scalable since the problem is
formulated as an optimal control problem. Signifying
that the model parameters can be easily updated with
changes in state variables and environment as time
progresses.

4) Though the number of variables grows nonlinearly as the
number of nodes increases, the computational effort to
solve the problem is rather practical due to the linearity
of the proposed model.

The rest of the paper is organized as follows. Section II
provides definitions, assumptions and related problem setup.
Section III introduces the dynamic model and constraints.
Section IV discusses the simulation results. Lastly, Section V
summarises this research and suggests future work.

II. PROBLEM SETUP

A. Definitions

• A homogeneous WSN refers to a wireless sensor net-
work that has the same type of sensor nodes, i.e., has the
same sensing, storage, processing, power consumption,
and communication protocol.

• A sensor node refers to a node that senses data in the
region of interest (ROI).

• A relay node is a node that relay its data to another node.
• An aggregator node refers to a node that receives data

from other nodes, then aggregates the data with its own
data.

• Redundant nodes refers to nodes in the network that are
not active at the time for the purpose of redundancy.

• A sink node refers to node that accumulates the sensed
data from other nodes to be used by the user.

• K-connectivity means that the sink node is connected
to a minimum of K sensor nodes. In other words, there
are at least K connections between sensor nodes and each
sink node. K-connectivity is directly related to the WSN’s
performance.

• Network lifetime defines the time until the K-
connectivity between sensor nodes and sink nodes cannot
be satisfied. This is also considered one of the WSN
performance metrics.

B. Assumptions

We assume that nodes in our network are composed of two
types, i.e., sensor nodes and sink nodes. All nodes except
sink nodes are homogeneous and can act as a sensor node,
a redundant node, and an aggregator node at the same time.
However, we do not consider data fusion, i.e., nodes will only
act as relay nodes. Sink nodes have unlimited energy.

C. Communication Model

In this study, we adapt from the work of [41], in which the
sensing model is a function of distance between sensor node
and environment conditions. In particular, the communication
model is adopted from the binary sensing model. We assume
that nodes are omnidirectional. Node i can communicate with
node j if the distance between them is within the predefined
communication range cr and is not blocked by any obstacles.
They cannot communicate otherwise. If dij denotes the three-
dimensional Euclidean distance between nodes i and j and
LOSij ∈ {0, 1} is a binary variable representing a line of
sight between two nodes, the binary communication model
can be expressed as follows:

cij =

{
1 if dij <= cr and LOSij = 1,

0 otherwise.
(1)

Note that the line of sight LOS can be calculated with
the adopted version of Bresenham algorithm, which has been
widely used in computer graphics for line drawing on 2-D
surfaces [48].

D. Energy Consumption Model

The energy consumption of a WSN node is consumed by
three terms: sensing energy, receiving energy, and transmitting
energy. We assume that the sensing energy of one unit of data
is a constant denoted by es. The receiving energy of one unit
of data er is also a constant. For the transmitting energy, we
adopt a free space model of a wireless channel, which depends
on the transmission distance d [49]. Hence, the transmitting
energy consumption of transmitting one unit of data from node
i to node j is as follows:

et = eelec + ϵfsd
2
ij , (2)

where eelec is the circuit loss energy, ϵfs is the energy
consumed by RF amplifier in the free space model, and dij
is the three-dimensional Euclidean distance between nodes i
and j.



THAMMAWICHAI AND LUANGWILAI: AN ENERGY-OPTIMIZATION TOPOLOGY ... 781

X

A1 A2

A3

S1
S2

S3 S4
S5

S6

S7
S8

S9

Fig. 1. WSN Topology when filled nodes and red arrows are the active nodes
and active lines (X—Sink node, A—Relay nodes and S—Sensor nodes).

III. WSN DYNAMIC MODEL WITH CONSTRAINTS

Let N := {1, · · ·, n} denote the set of sensor nodes in the
network, where n is the total number of sensor nodes. Let S :=
{1, · · ·, s} denote the set of sink nodes, where s is the total
number of sink nodes in the network. Let node 0 represent the
origin node that connects to every sensor node in the network.
Let N+ := {0} ∪N be the set of sensor nodes, including the
origin node. It is worth noting that our network topology is
not fully connected. Only links between sensor nodes are fully
connected, while the links from the origin node to sensor nodes
and the links from sensor nodes to sink nodes are directional
graphs. Fig. 1 illustrates an example of our network topology
at one decision round, where dashed lines represent active
links. Notice that not all of the nodes are active due to the
sleep/wake-up scheduling protocol.

A. Communication Constraints

Let C := [cij ] denotes the communication link matrix
between node i and node j with a size of {N ∪ S} × N+

That is, cij = 1 if node j transmits data to node i for all
i ∈ {N ∪ S}, j ∈ N+. Note that sink nodes cannot transmit
data to any other nodes, and the origin node cannot receive
data from other nodes. The communication link is subject to

cij ∈ {0, 1} ∀i ∈ {N ∪ S}, j ∈ N+,

(3)
n∑

j=1

cij ≥ K ∀i ∈ S, (4)

cii = 0 ∀i ∈ N, (5)
cij = 0 if dij > cr or LOSij = 0 ∀i ∈ {N ∪ S}, j ∈ N+,

(6)
n∑

j=0

cij −
n+s∑
j=1

cji = 0 ∀i ∈ N, (7)

where (3) states that the communication link is a binary
variable. The constraint (4) guarantees the K-connectivity
for each sink node. The constraint (5) prohibits the self-
communication of sensor nodes. The constraint (6) enforces
that there is no communication link between nodes if the
distance between them exceeds the communication range or

the line of sight is occluded. These can be implemented as
inequality constraints as follows:

mcij ≤ (Dij ∧ LOSij) ∀i ∈ {N ∪ S}, j ∈ N+,
(8)

Mcij ≤ 1.5M − (Dij ∧ LOSij) ∀i ∈ {N ∪ S}, j ∈ N+,
(9)

where m and M is sufficiently small and big positive numbers,
respectively. Let Dij be 1 if dij ≤ cr and 0 otherwise. Dij ∧
LOSij denote the logical AND operation of Dij and LOSij .
Clearly, suppose Dij ∧LOSij = 1 then (6) is true if and only
if cij = 0 or 1. Suppose Dij ∧ LOSij = 0 then (6) is true if
and only if cij = 0.

The constraint (7) imposes a conservation of data with the
node, i.e., the summation of data in equals the summation of
data out.

B. Energy Constraints

The total energy usage by node i during the time interval is
composed of sensing energy, receiving energy, and transmit-
ting energy. The sensing and receiving of energy are assumed
to be constant. Let L denote the length of sensing data at a
time (bits). Thus, the sensing and receiving energy consumed
by node i within the time interval are

Es
i (ci0) := esLci0 ∀i ∈ N, (10)

Er
i (cij) := erL

n∑
j=1

cij ∀i ∈ N, (11)

where ci0 represents the connection between the origin node
and node i. The transmitting energy is a function of the
distance between nodes in 3D terrains, as described in Sec-
tion II-D. Therefore, the transmitting energy consumed by
node i within the time interval is

Et
i (cij , dij) :=

n+s∑
j=1

(eelec + ϵfsd
2
ij)Lcji ∀i ∈ N.

(12)
Let ei be energy stored in node i. Each sensor node i in the

network is subjected to

Ei = Es
i + Er

i + Et
i ∀i ∈ N, (13)

Ei ≤ ei ∀i ∈ N, (14)

where constraint (13) defines Ei as the total energy consumed
by node i during the time interval for sensing, receiving and
transmitting. The constraint (14) assures that the energy usage
will not exceed the current energy of the node.

C. WSN Dynamic Model

Let k denote the kth decision at time interval [tk, tk+1]
where tk+1 − tk = h. The WSN state space model X and
the control input u at decision round k are defined as

X(k) := [e1(k); e2(k); · · ·; en(k)], (15)
u(k) := [C(k);E(k)], (16)

where E(k) defined as a vector of the energy con-
sumption of all sensor nodes at decision round kth, i.e,
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[E1(k);E2(k), · · ·, En(k). Also, notice that all variables in
previous sections can be considered as a function of k. The
state update equation is given by

X(k + 1) = X(k)− E(k) ∀k. (17)

D. Objective Function

For this work, our objective is to minimize energy con-
sumption in order to maximize the network lifetime. To
achieve that, we consider two objective functions: the total
energy consumption f1 :=

∑n
i=1 Ei and the deviation of the

remaining energy of each node from the average remaining
energy f2 :=

∑n
i=1 |(ei − Ei) − ē|, where ē is the average

remaining energy of all sensor nodes. It can be seen that
our second objective function f2 is nonlinear, which can be
reformulated as a linear function by introducing new variables
and constraints [50] as follows:

yi := y+i − y−i ∀i ∈ N, (18)

y+i − y−i + Ei = ei − ē ∀i ∈ N, (19)

y+i , y
−
i ≥ 0 ∀i ∈ N. (20)

Then our new linear objective function is

f̂2 :=

n∑
i=1

(y+i + y−i ). (21)

Clearly, the new objective function f̂2 is the sum of positive
and negative values of the absolute. It also should be noted
that the solution obtained by solving the optimization problem
with the objective function f2 is the same as with the objective
function f̂2. Therefore, the complexity of the optimization
problem can be greatly reduced from nonlinear to linear.

E. Optimal Control Problem

To summarise, the WSN scheduling problem with K-
connectivity in 3D terrains can be formulated as the following
optimal control problem: Given n sensor nodes and s sink
nodes, at each decision round k, determine the nodes schedule
and the communication links that solves

minimize
u

f1/f̂2/f1 + f̂2

subject to (3)− (5), (7)− (9),

(13)− (14), (18)− (20).

It is worth noting that our optimization problem is a mixed-
integer linear programming (MILP) as our objective function
and constraints are linear but some of the decision variables
are integers. MILP can be solved by commercial software
packages such as CPLEX [51], GUROBI [52], MATLAB Opti-
mization Toolbox [53] and non-commercial software packages
such as SCIP [54] and SYMPHONY [55].

Fig. 2. 256-by-256-meter 3D terrain and sensor nodes (id number is in red).

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Number of sensor nodes n 50 ∼ 100
Number of sink nodes s 1 ∼ 5
Number of guarantee connectivity K 5 ∼ 70
Initial sensor energy e0i 1 J
Communication range cr 110 m
Sensing energy es 2.5 µJ/bit
Receiving energy er 0.5 µJ/bit
Circuit loss energy eelec 5 µJ/bit
RF amplifier energy in free space efs 100 pJ/bit/m2

Packet length L 128 bits
M 106

m 10−6

IV. SIMULATION AND RESULT DISCUSSIONS

A. Simulation Setup

To validate the proposed scheme, our MILP is compared
with the well-known multi-hop LEACH-based clustering pro-
tocol [25] in terms of energy consumption and network
lifetime. The compared protocol is described in detail in
Section IV-B. The proposed method is implemented in MAT-
LAB [56] and solved by the MATLAB Optimization Toolbox.

For each simulation, sensor nodes, sink nodes, and an origin
node are randomly distributed within a random 256× 256 m2

3D terrain with a maximum height of 17.1 meters and an
average height of 4.65 meters, as can be seen in Fig. 2. The
total number of sensor nodes n varies from 50 to 100. The
number of sink nodes s varies from 1 to 5. As stated in our
assumption, we assume that sink nodes have unlimited energy.
All sensor nodes are the same, i.e., the communication and
sensing models as well as the initial energy. Other simulation
parameters are shown in Table I.

B. Multi-hop LEACH Protocol

The multi-hop LEACH is an improved version of the
classical LEACH. At each decision round, a cluster head is
randomly selected. If the selected cluster head cannot connect
to any sink node, i.e., its path is blocked by terrain or it is
out of communication range, then the data is transmitted to
the nearest available cluster head. This process is repeated
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Algorithm 1 Multi-hop LEACH
Input: The cluster head ratio, nodes’ position and terrain
Output: Number of transmissions, connection paths and
nodes’ energy

1: Initial energy
2: while Sufficient active nodes for K-connectivity. do
3: Selecting cluster heads.
4: Finding path from cluster heads to sink.
5: Finding path from cluster heads which cannot connect

to sink to other cluster head on the network.
6: Finding path from normal nodes to the closest available

cluster head node.
7: Selecting nodes which can connect to the network and

relay data to the sink node.
8: if Enough selected nodes for K-connectivity then
9: Calculate energy consumption of each node.

10: end if
11: end while

until the number of selected nodes (nodes that are able to
transmit or relay data to a sink node) meets the K-connectivity
constraints. In the event that there is an insufficient number
of selected nodes, the routine will jump to the next round and
begin to randomize the cluster head nodes. The full details of
this algorithm can be found in [25] and the algorithm steps
are illustrated in Algorithm 1.

C. Simulation Results and Discussions

In this section, we demonstrate the capabilities of our
MILP. To do so, we assume fifty sensor nodes are dis-
tributed randomly in a 256-by-256-meter 3D terrain. Three
sink nodes are pre-located at the locations (192,130,16.7271),
(50,100,6.2081), (150,50,2.0214). The objective function is to
minimize f1 + f̂2. The number of guaranteed K-connectivity
is set to 12 per sink node. The sensor nodes initially have 1 J
of energy. At each decision round, the algorithm computes the
optimal communication links between sensor nodes and sink
nodes to guarantee that each sink node will have at least 12
sensor nodes to connect to. The algorithm ends when there is
no solution. For this scenario, the algorithm runs for a total
of 890 rounds. Fig. 3 shows examples of optimal multi-hop
network topologies generated by our MILP at different time
steps, that is, 0, 50, 500, and 800. Here we display the terrain
as a contour plot, where blue square boxes are sink nodes and
blue circles are sensor nodes. The orange arrow lines represent
the communication links between nodes. The numbers over the
lines designate the number of transmitting packets. As can be
seen in the simulation, the network topology obtained from
our algorithm is adaptive to the current information at each
decision round of the network, i.e., the remaining energy levels
of the remaining nodes.

Fig. 4 exhibits an example of node scheduling from the
simulation, where an active node is set to one and a sleep
node is set to zero at each time step. Note that we only showed
the sleep and wake-up schedules of nodes 1, 10, 20, 30, and
50. As can be seen in Fig. 4a, node 10 is frequently active

throughout the simulation. This is because node 10 is placed
near the sink node (at the middle left), meaning that it will
be cheaper to route from this node. Now let us consider the
remaining energy plot in Fig. 4b. It can be observed that there
are some nodes that cannot be used due to the terrain blocking
the communication path (nodes 15 and 45). Nodes that are
closest to the sink will deplete energy faster than the others.
It is also worth noting that the remaining active nodes have
balanced energy levels as a result of our objective function,
which seeks to minimize the variance in remaining energy
among nodes.

Next, we experiment on test #2 by varying the number of
sensor nodes from 50 to 100 nodes with a step size of 10 to
observe the performance metric, i.e., the network lifetime. We
fix the terrain and place one sink node at the highest location
on the map. The number of K-connectivity is set to 70% of
the total number of sensor nodes in all cases. Fig. 5 presents
the network lifetime plots and the optimal objective value plots
for different numbers of sensor nodes. It can be seen that, for
this particular terrain, the case with 60 sensor nodes provides
the longest network lifetime. Further increasing the number of
nodes does not improve the lifetime of the network. Fig. 5b
suggests that the objective value increases as the number of
sensor nodes increases. It also shows rapid growth near the
end of the simulation. This happens because the nearer sensor
nodes die out, causing the optimizer to choose a further node,
leading to extreme energy consumption.

To further analyze our proposed method, we run the sim-
ulations of test #3 for different numbers of sink nodes s and
test #4 for varying the k-connectivity percentages with three
objective functions. Specifically, we fix the number of sensor
nodes n to 50 nodes, vary the number of sink nodes s from 1
through 5, and the k-connectivity from 50%–90% of n. The
terrain is the same as before, and the locations of five sink
nodes are fixed for all simulations. The results are illustrated in
Figs 6 and 7. It is obvious that the network lifetime decreases
as the K-connectivity constraint increases, as shown in Fig. 6.
On the other hand, placing more sink nodes in the area will
prolong the network lifetime, as displayed in Fig. 7. This is
due to the shorter communication distance between a node and
the sink node, hence the lesser transmitting energy usage. The
multi-objective function of minimizing the total energy and
balancing energy (f1+ f̂2) achieves a longer network lifetime
than the others in most cases. The objective of minimizing total
energy performs worst in all cases, meaning that balancing
energy consumption among nodes should be considered in
designing routing schemes. Finally, the graphs suggest that
there is an optimal number of sensors and an optimal K-
connectivity value for maximizing network lifetime. However,
this is not the objective of this study.

Next, we present the performance comparisons of our
MILP with the multi-hop LEACH. In this comparison, both
algorithms are applied to the same terrain when there is only
one sink node located at (192, 130, 16.7271). All sensor nodes’
locations remain the same as in Fig. 2. Both algorithms aim to
maximize the number of transmission rounds with guaranteed
K-connectivity.

Fig. 8 shows the performance comparison between MILP
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(a) Time steps = 0

(b) Time steps = 50

(c) Time steps = 500

(d) Time steps = 800

Fig. 3. WSN Network for 50 sensor nodes and 3 sink nodes.
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(b) Remaining energy plot

Fig. 4. Node scheduling and energy plots

and multi-hop LEACH. In this comparison, the K-connectivity
is varied from 0.5 to 0.9, and the maximum number of trans-
missions is determined when there are no more solutions for
the K-connectivity. In Fig. 8a, the blue dot line is the result of
multi-hop LEACH, while the red yellow-dot line is the result
of MILP. The multi-hop LEACH can reach 764, 599, 477, 380,
and 228 rounds of transmissions for K-connectivity of 0.5,
0.6, 0.7, 0.8, and 0.9, respectively. The MILP algorithm can
improve the performance by increasing the network lifetime
to 1,060, 839, 647, 475, and 294 transmission rounds for
K-connectivity of 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. It
can be seen in Fig. 8b that the network lifetime of MILP is
significantly improved over the multi-hop LEACH for all K-
connectivity cases, with at least 25% for 0.8 K-connectivity.
The improvement maxes out at 0.45% for a 0.7 K-connectivity
case. This evidence proves that the MILP provides significant
potential for WSN technology and further development. The
explanation for these results is that the MILP optimally deter-
mines the topology according to the energy balance objective
function instead of randomly choosing cluster heads as in the
multi-hop LEACH.

In Fig. 9, the remaining energy of each node after the
final transmission round for the case of 0.7 K-connectivity is
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(a) Network Lifetime vs Number of Sensor Nodes

(b) Objective value plots

Fig. 5. Test #2: n = 50− 100, s = 1,K = 70% of n.

shown. The red bars represent the energy of each node in the
MILP algorithm, while the blue bars represent the energy in
the multi-hop LEACH algorithm after the final transmission
rounds, which are rounds 647 and 477, respectively. In this
figure, the energy of nodes 15, 45, and 47 remains the same
as the initial energy of one joule. This is because these three
nodes cannot connect to other nodes on the network because
the transmission line is blocked by the rough terrain. The
MILP has five dead nodes with node ids of 6, 17, 25, 32,
and 50. The multi-hop LEACH algorithm has six dead nodes,
which are node ids: 6, 17, 25, 32, 40, and 50. From this
figure, it can be inferred that the MILP can balance the energy
consumption of each node throughout the simulations better
than the multi-hop LEACH algorithm. As a result, the network
can extend the transmission round by 35%.

Lastly, we demonstrate the robustness of our proposed
method by comparing our MILP with the multi-hop LEACH.
In this comparison, both algorithms aim to maximize the num-
ber of transmission rounds with guaranteed K-connectivity.
The maximum number of transmissions per round, i.e., a
network lifetime, is determined when there is no solution to
the topology control problem with K-connectivity constraints.
Both algorithms are applied to three different terrains. The
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(c) s = 3
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(d) s = 4
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Fig. 6. Test #3: Network lifetime vs K-connectivity, n = 50.
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(a) K = 50%
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(b) K = 60%
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(c) K = 70%
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(d) K = 80%
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(e) K = 90%

Fig. 7. Test #4: Network lifetime vs Number of sink nodes, n = 50.
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Fig. 8. Performance comparison between MILP and multi-hop LEACH.
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Fig. 9. Remaining energy of each node after the final transmission round
(rounds: 647 for MILP and 477 for Multi-hop LEACH).

256×256 meter2 terrains are randomly generated with heights
varying between 0 - 20 meters, as shown in Fig. 10.

For this comparison, the simulation is run for 30 rounds
(ten for each terrain × three) for each K-connectivity and each
algorithm. The total is 150 rounds for each algorithm (five K-
connectivity values). For each round, all 50 sensor nodes are
randomly located over the terrain. These locations are used
for both algorithms in one simulation run. Then, for the next
round, the sensor node locations are random again. On the
other hand, a sink node is manually selected by choosing the
highest point around the center area of each terrain.

The simulations have demonstrated that the MILP sub-
stantially improves the network lifetime over the multi-hop
LEACH in every case. The performance gains for each in-
dividual case vary from 3 to 198%. The comparison of the
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(a) Map number 1

(b) Map number 2

(c) Map number 3

Fig. 10. Three randomly generated terrains for comparison of MILP and multi-
hop LEACH performance.

Fig. 11. Performance comparison between MILP and multi-hop LEACH.

maximum number of transmissions is shown in Fig. 11. In
this figure, the blue bars are the results of MILP, while the
red bars are the results of multi-hop LEACH. For each bar,
the middle line is the average value of the maximum number of
transmissions, while the top and bottom lines are the maximum
and minimum of the maximum number of transmissions for
each K-connectivity from all three terrains with 30 rounds of
random node locations.

For MILP, the average maximum number of transmission
rounds is 839.06, 676.40, 548.40, 432.86, and 292.4 for
k = 0.5 – 0.9, respectively. Whereas the average maximum
number of transmissions for the multi-hop LEACH are 635,
494.66, 382.53, 295.53, and 191.13 for k = 0.5 – 0.9, respec-
tively. Here, it can be seen that the average performance

increases are 31.50, 36.31, 45.77, 49.80 and 61.34 percent
for k = 0.5 – 0.9, respectively, and the overall increase for all
cases is 44.94 percent.

V. CONCLUSIONS

This paper considers an energy-efficient WSN routeing
problem in 3D terrain. The MILP, with the objective of
minimizing energy consumption and maximizing network
lifetime, is formulated as an optimal control problem. Our
network topology is capable of self-organization; that is, the
optimal number of active nodes and routing paths is automat-
ically determined at each decision round. Energy balance and
sleep/wake-up schemes are adopted to prolong the network
lifetime. Simulation results illustrated that the MILP algorithm
proposed in this study has shown promising performance over
the notable multi-hop LEACH protocol, with an improvement
of at least 25% for all cases, reaching a maximum of 45%.
Furthermore, it is proven that the objective of balancing
energy consumption among nodes achieves a longer network
lifetime than that of minimizing total energy in general. For
future work, one can extend the approach to address the
heterogeneous WSN routing protocol. Another is to consider
a more realistic communication channel model.
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