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Abstract—This study developed a novel group management
scheme based on clustered federated learning (FL) for mobile
traffic prediction (referred to as FedGM) in mobile edge com-
puting (MEC) systems. In FedGM, to improve the convergence
time during the FL procedure, we considered multiple MEC
servers to first be clustered based on their geographic locations
and augmented data patterns as references for clustering. In each
cluster, by alleviating the straggler impact owing to the hetero-
geneity of MEC servers, we then designed a group management
scheme that optimizes i) the number of groups to be created
and ii) the group association of the MEC servers by minimizing
their average idle time and group creation cost. For this purpose,
we rigorously formulated analytical models for the computation
time for local training and estimated the average idle time by
applying different frequencies of local training over the MEC
servers. The optimization problem was designed using a non-
convex problem, and thus a genetic-based heuristic approach
was devised for determining a suboptimal solution. By reducing
the average idle time, thereby increasing the workload of the
MEC servers, the experimental results for two real-world mobile
traffic datasets show that FedGM surpasses previous state-of-the-
art methods in terms of convergence speed with an acceptable
accuracy loss.

Index Terms—5G/6G, federated learning (FL), genetic al-
gorithm, group management scheme, mobile edge computing
(MEC) server, mobile traffic prediction.

I. INTRODUCTION

W ITH the rapid development of artificial intelligence
(AI) technologies, AI-driven mobile networks have

received increased attention from various industries and
academia toward sixth generation (6G) communications for
enabling more advanced intelligence into the network manage-
ment domain. Specifically, by utilizing the data generated from
the network functions (NFs), the network data analytic func-
tion (NWDAF) was introduced and standardized by 3GPP for
leveraging the AI functionality in core networks [1]. Driven by
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this trend, mobile traffic prediction, which estimates the future
volume of traffic data , has emerged as one of the key study
items for enabling proactive AI-driven network management
by meeting the requirements of heterogeneous services from
various devices (e.g., smartphones, sensors, vehicles, drones,
and factory machines) on 6G networks [2]–[4].

In this context, most studies on mobile traffic prediction
schemes have relied on the centralized learning paradigm
through the application of different AI models, which require
a significant number of raw data transmitted from each mo-
bile edge computing (MEC) server to a centralized training
server [5], [6]. Accordingly, such a centralized approach
results in negative impacts on the latency, processing costs at
the centralized server, and privacy. Hence, distributed training
approaches for mobile traffic prediction are required to address
this challenge.

One potential technique for addressing this challenge is
FL [7]. In FL, multiple collaborative clients, such as mobile
devices, MEC servers equipped with base stations (BSs), or
companies, train their local models while retaining their local
data. Subsequently, only the model parameters (or gradients)
are transferred to a centralized training server for global model
aggregation. The updated global model parameters are then
delivered back to the clients for the next local training, and
the process is repeated until the model converges. In this case,
the training speed is limited by the heterogeneity of the clients
(e.g., differing numbers of datasets and computing capabilities)
who participated in the FL. Thus, many studies have been
conducted to improve the convergence speeds of FL consider-
ing the clustering of clients, the client selection, and resource
management (e.g., bandwidth and CPU/GPU frequency) [8].
Specifically, in [9], a resource-based aggregation frequency
control method was proposed that considers different frequen-
cies of local training over the clients for a better convergence
speed. In [10], a joint client selection and bandwidth allocation
algorithm was developed considering the heterogeneity of the
clients for reducing the convergence time. Nevertheless, to
the best of our knowledge, most FL studies have yet to be
applied to mobile traffic prediction scenarios. Zhang et al. [11]
introduced clustering-based FL for mobile traffic prediction
based on the augmented data pattern and geographic locations
of the MEC servers as clustering references. Specifically,
because a variety of BSs may have distant traffic patterns that
hinder the convergence speeds, MEC servers are clustered, and
a model based on the dual attention aggregation mechanism
and an aggregation structure based on a hierarchical structure
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have approved. However, during the clustering, there is no
consideration of the heterogeneous computing power or the
number of datasets in the MEC servers, thereby affecting the
local training speed. Thus, previous approaches still have room
for improvement, thus inspiring the present study.

In this study, we jointly optimize the grouping of the
MEC servers and group association based on clustered FL for
mobile traffic prediction in MEC system (FedGM) aiming for
improving the convergence time during the FL procedure. The
main contributions of this study are summarized as follows:

‚ We developed a new clustered FL group management
scheme for mobile traffic prediction (referred to as
FedGM) in MEC systems to reduce the latency, process-
ing costs, and privacy. All these things will greatly affect
the amount of processing time, energy consumption, and
convergence time.

‚ To improve the convergence time during the FL proce-
dure, in FedGM, we considered multiple MEC servers
to be first grouped based on the augmented data pattern
and the geographic locations of the MEC servers as clus-
ter references to simultaneously capture different clients
traffic patterns and keep data privacy.

‚ Subsequently, in each cluster, reducing the impact of
stragglers owing to the heterogeneity of the MEC servers,
we designed a group management scheme that optimizes:
i) the number of groups to be created and ii) the group
association of the MEC servers by minimizing both their
average idle time and the cost of creating groups of
servers.

‚ To this end, we rigorously formulated analytical models
for the local training computation time and estimated the
average idle time by applying various numbers of local
updates over the MEC servers.

‚ The optimization problem is designed from a non-convex
problem, and thus, a heuristic approach based on a
genetic algorithm was devised to determine a suboptimal
solution.

‚ For practical reasons, the proposed scheme complies with
the NWDAF-distributed framework standardized by the
3GPP specifications. Then, rather than waiting for a
straggler, by reducing the average idle time, the MEC
servers maximize the time spent on useful local training,
yielding a faster convergence.

‚ Extensive experiments are conducted using real-world
mobile traffic datasets in two cities to show the effec-
tiveness of our designed FedGM framework. The results
show that FedGM outperforms previous state-of-the-art
methods in terms of convergence rate with an acceptable
loss in accuracy.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the previous works related to mobile traffic
prediction. Section III provides the proposed system model of
the FedGM. Section IV provides our proposed FedGM for
minimizing the average idle time and group creation cost,
and detailed discussions on its implementation. In Section V
evaluates the performance of the proposed system. Finally,
Section VI concludes the paper.

II. RELATED WORKS

In order to manage resources efficiently in a communication
network, it is very important to use traffic time series. With
the expansion of the use of cellular mobile technologies in the
edge space, more attention has been paid to mobile traffic pre-
diction in recent articles. In general, mobile traffic prediction
schemes can be analyzed in three groups includes simple meth-
ods, parametric methods, and non-parametric methods. Simple
methods are used to predict future traffic value based on the
historical averaging [12]. The most important application of
the simple methods are in the exponentially weighted moving
average (EWMA) which is the temporal dynamic sensitivity
of the traffic volumes can be controlled by calibrating the
exponential smoothing factor in the range of zero and one [13].

Although these methods are highly accurate. However, for
these day’s complex communication networks, where network
dynamics are influenced by various spatial and temporal
factors. They are not of much use. For this reason, it is better
to use statistical or probabilistic prediction methods in which
the mixture of various spatio-temporal factors have a greater
impact on traffic dynamics. Parametric methods create prob-
abilistic or statistical prediction models assuming that traffic
dynamics are generated from random variables with a specific
probability distribution [14]. With the rapid development of
mobile communications and the widespread penetration of
cellular traffic, many efforts have been constructed to predict
mobile traffic. Initially, classical learning methods such as the
auto-regressive integrated moving average ARIMA [12] and
support vector regression (SVR) [26] are popular for traffic
prediction. To start the prediction process, it is necessary to
first create a model through calculations or simulation. In [12]
they used ARIMA which is able to detect the hidden burstiness
and self-similarity hidden in traffic series [15], [16]. In addi-
tion to ARIMA, a wide range of probabilistic and statistical
applications such as Markov model [17], entropy theory [18],
covariance function [19] and alpha-stable model [20] have
been investigated for mobile traffic prediction. In the last few
years, deep learning approaches have established themselves
as strong competitors to traditional statistical models and have
become mainstream technologies for solving the mobile traffic
prediction problem. According to [21] the authors used the
feature-selection method that a prioritization method that pri-
oritizes traffic log data as stated by their contributions to pre-
diction. To solve the problem of a huge capacity of traffic log
data, only a part of traffic logs can be used for real-time mobile
traffic prediction. Non-parametric methods create prediction
models without considering probability distributions. With the
emergence of deep learning technology based on artificial
intelligence, these methods have been created. Basically, since
traffic prediction requires obtaining the temporal dependence
that appears in the time-series data set; long short-term mem-
ory (LSTM) is usually used due to proper recognition of
sequential patterns [11], [22], [23]. Also, [24], proposed the
use of data pre-processing before injecting them into an LSTM
neural network for time series prediction. Even though, FL
was presented to allow model training in distributed manner
when data usage is limited to the local domain without data
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TABLE I
APPROACHES TO MOBILE TRAFFIC PREDICTION.

Approaches Ref. Key Ideas

Simple methods
[12] Simple methods are used to predict future traffic value based on the historical averaging.
[13] EWMA is the temporal dynamic sensitivity of the traffic volumes can be controlled by

calibrating the exponential smoothing factor in the range of zero and one.

Parametric methods
[14] Create probabilistic or statistical prediction models assuming that traffic dynamics are

generated from random variables with a specific probability distribution.
[12] Use ARIMA to create a model through calculations or simulation.
[15], [16] Able to detect the hidden burstiness and self-similarity hidden in traffic series.
[17] Markov model
[18] Entropy theory
[19] Covariance function
[20] Alpha-stable model

Non-parametric methods [11] Create prediction models without considering probability distributions (with the emer-
gence of deep learning technology).

The feature-selection method [21] Use a prioritization method that prioritizes traffic log data as stated by their contributions
to prediction. To solve the problem of a huge capacity of traffic log data, only a part
of traffic logs can be used for real-time mobile traffic prediction.

Dual attention-based FL (FedDA) [11] Try to solve the mobile traffic prediction problem by a distributed architecture and FL.

LSTM method in mobile traffic
[11], [22], [23] Use the proper recognition of sequential patterns.
[24] Use data pre-processing before injecting them into an LSTM neural network for time

series prediction.
Federated meta-learning algorithm [25] To achieve efficient mobile traffic prediction at the edge they introduced a model-

agnostic meta-learning (MAML) algorithm based on the FL framework.

leakage concern. In mobile traffic prediction, FL can be used
to avoid increase in transmission of traffic data overhead while
ensuring data privacy for various users or applications. In
this regard, a dual-attention-based FL (FedDA) scheme was
proposed in [11], which effectively collects the contributions
of different client models in different BSs to a global model
in the central server. This manner was used [27] for the first
time in 2016 for collaborative learning in wireless networks,
where communication resources, such as transmission power
and bandwidth, are restricted and local clients privacy needs
to be protected. In [25], authors introduced a model-agnostic
meta-learning (MAML) algorithm based on the FL framework
to achieve efficient mobile traffic prediction at the edge. To
this aim, they trained a sensitive initial model that could adapt
very quickly to heterogeneous mobile traffic datasets in various
regions. In addition, they used distance-based weighted model
aggregation on their proposed scheme and then, compared the
results with some other traditional and FL-based algorithms
like SVR, random forest (RF), federated averaging (FedAvg),
and FedDA, respectively.

III. SYSTEM MODEL

In this section, we first introduce the background of FL
and its application to the distributed NWDAF framework in
MEC systems for mobile traffic prediction. Then, we present
the proposed FedGM, a new clustered FL group management
scheme for mobile traffic prediction in MEC systems, and its
analytical models.

A. Background of FL and its Application to the Distributed
NWDAF Framework

In this subsection, we firstly provide the background of
FL and its application to the distributed NWDAF framework
for mobile traffic prediction in MEC systems. As shown in
Fig. 1(a), we considered multiple MEC servers participating

in the FL process, with each MEC server directly connected
to the BSs through a wired network such as optical fiber.
We define I as the set of MEC servers, where |I| = I
denotes the total number of MEC servers. For each i P I,
MEC server i has its own local mobile traffic data, denoted
as Di=tD1

i ,D2
i , ¨ ¨ ¨ ,DZ

i u with Z time intervals, where Di

denotes the size of the mobile traffic data Di. To realize
the FL process on the MEC server, we adopted a distributed
NWDAF architecture as in [28]. Note that the NWDAF is
a 3GPP-defined function in 5G networks that provides data
analytics services and it uses network data to provide insights
into network traffic, user behavior, and network performance.
FL can be used in conjunction with NWDAF to train models
using the data generated by the network and provide insights
to the network operators. Specifically, we assume that the root
NWDAF is installed at the core network server for global
model training and that each leaf NWDAF is installed at the
MEC server in a container form for local training. By fol-
lowing the normal procedures of the FL, MEC server i trains
the local model at the model training logical function (MTLF)
module by utilizing the Di training dataset stored in the data
storage to minimize the loss function Lipwiq with training
model parameters wi, which is defined as

Lipwiprqq “ 1
Di

ř

kPDi
lkpwiprqq. (1)

Here, r is the round index, and lkpwiprqq is a loss function
that quantifies the error between the output and ground-truth
label. At the tth local iteration, each MEC server i updates its
model parameters wi as follows:

wiprqt “ wiprqt´1 ´ η∆Lipwiprqt´1q, (2)

where η denotes the learning rate. After the training is
complete, each MEC server i uploads the weights wiprq

to the aggregation module of the learning module in the
root NWDAF using the communication module. It should be
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Fig. 1. (a) Proposed FedGM scheme. (b) A round of model training based on grouping.

denote that, throughout this paper, according to [29], due to
the high transmit power at the NWDAF core network server
and the bandwidth that can be used for data broadcasting
between MEC servers and the NWDAF core network server,
the communication time is suppose to zero. Then, the core
network server obtains the global model w at the aggregation
module by aggregating the local weights1. The core network
server transmits the global model parameters w to all MEC
servers. By running these steps iteratively until the global
model w converges, the global model w can be utilized in an
analytics logical function (AnLF) module for mobile traffic
prediction (i.e., inference).

B. Proposed Clustered FL Framework

In this subsection, we provide the proposed FedGM as a
new clustered FL group management scheme for mobile traffic
prediction, which is a novel and optimized approach aiming
for reduced computation and convergence time while ensuring
privacy and accuracy. To achive this goal, based on the
framework suggested in the previous subsection, we provide
the novel function in the management module at the root
NWDAF. Specifically, in this management module, to improve
the convergence speeds, we first clustered the multiple MEC
servers based on the augmented data pattern and geographic
locations of the servers as clustering references, as in [11]2.
Then, as in [9], we assume that for each i P I, MEC server
i has a different number of datasets Di and different CPU
frequency ei. Owing to the heterogeneity of the MEC servers,
as shown in Fig. 1(b), the local training time for each MEC
server can vary, and the idle time over the MEC servers caused
by stragglers reduce the workload of the MEC servers. This
indirectly hinders a fast convergence. Thus, in the proposed
FedGM, by introducing different frequencies of local training
over the MEC servers and a group management scheme in

1Various techniques such as FedAvg and FedDA can be utilized, as in [11].
2As in [11], for privacy concerns, instead of sending raw mobile traffic data,

each MEC sends its augmented data and geographic location information.
We compute the statistical average value for each time point to obtain the
augmented data, which follows the steps described in Section IV. [11]. Then,
the size of the augmented data is smaller than that of the raw data, while
preserving high similarities.

the management model3, we minimize the weighted sum of
the average idle time and group creation cost over the MEC
servers by determining the optimal number of groups to be
created and the group association of the servers. Then, rather
than waiting for the straggler, the MEC servers maximize
the time spent on useful local training, which yields a faster
convergence. The right side of Fig. 1(b) depicts the impact on
the idle time over the MEC servers with the proposed FedGM.
Here, the average idle time over the MEC servers, depicted
by the gray arrow, is dramatically reduced compared with that
without the proposed FedGM.

C. Analytical Models

In this subsection, we provide analytical models by formu-
lating i) the computational load and time for local training,
and ii) the idle time for each MEC server i.

1) Computational load and time for local training: To
model the computational time for local training, we first
defined the computational load Wi (i.e., the number of CPU
cycles for local training at the server) for MEC server i, which
is proportional to Di. Then, Wi is obtained by

Wi “ Neip
Di

Bs
qCBs “ NeiCDi, (3)

where Nei denotes the total number of epochs for each MEC
server i in the cluster. In addition, Bs denotes the mini-batch
size (training data size of one iteration), and the constant C is
the number of CPU cycles required for training 1-bit of data.
The computation time ti of MEC server i with CPU frequency
ei is then given by the following:

ti “
Wi

ei
. (4)

2) Idle time: In the proposed FedGM, the management
module can adjust the number of groups m to be created in
the cluster and the group association rule bi,j , where bi,j is
a binary variable that represents whether the MEC server i is
associated with group j in the specified cluster. For instance, if
it is associated, bi,j “ 1; otherwise, bi,j “ 0. With the obtained

3In the group level aggregation, we consider a weak synchronization, which
is widely used for a hierarchical FL model, as in [9].
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TABLE II
VARIABLES AND FUNCTIONS TABLE.

Name Instruction

I The set of MEC servers
|I| = I The total number of MEC servers
Di The size of the mobile traffic data
wi The training model parameters
Lipwiq The loss function
r The round index
lkpwiprqq A loss function between the output and ground-truth label
η The learning rate
ei The CPU frequency
Nei The total number of epochs for each MEC server i
Bs The mini-batch size
C A constant number of CPU cycles for training 1-bit of data
ti The computation time ti of MEC server i
bi,j A binary variable represents MEC server i is associated with

group j

ti,j The computation time for MEC server i in group j

maxj The maximum computation time obtained by the straggling
MEC server in group j

tidlei,j The idle time for MEC server i in group j

α The weight factor of m compared to the average idle time over
the MEC servers

m The total number of groups to be created between 1 and Mmax

Mmax The maximum number of groups
CH A chromosome in the genetic algorithm
POP A population set is called a generation
rselect The selection ratio
Chpi A parent chromosome

association rule bi,j , the computation time for MEC server i
in group j denoted by ti,j can be extended from (4), which is
given by ti,j “ tibi,j . Then, the maximum computation time
obtained by the straggling MEC server in group j maxj is
calculated as

maxj “ maxpt1,j , t2,j , ¨ ¨ ¨ , tI,jq. (5)

By applying different frequencies of local training over the
MEC servers, the frequency of local training at MEC server
i in group j can be obtained by Fi,j “ tmaxj{tiu. Finally,
the idle time for MEC server i in group j is given by the
following:

tidlei,j “ maxj ´ Fi,jti “ maxj ´ t
maxj

ti
uti. (6)

IV. PROBLEM FORMULATION AND PROPOSED SCHEME

In this section, we introduce the proposed FedGM scheme,
which jointly optimizes the grouping of the MEC servers
and group association based on clustered FL for mobile
traffic prediction in MEC system aiming for improving the
convergence time during the FL procedure. We provide in
Table II a list of the major symbols that we define and use in
this paper.

A. Problem Definition

In our design of the FedGM scheme, we aimed at minimiz-
ing both the average idle time and the group creation cost over
the MEC servers in the cluster.

It should be noted that in this study, the number of clusters
is assumed to be fixed while the number of groups within
each cluster is optimized using a genetic algorithm. Thus, a
multi-objective optimization problem is involved in balancing
different types of metrics. To characterize this trade-off, we
adopt the weighted linear sum method [10] to define the cost
function as

Cpbi,j ,mq “
ÿ

j

ÿ

i

tidlei,j
I

` α ¨ m, (7)

where α ě 0 is the weight factor of m compared to the
average idle time over the MEC servers, which represents
the group creation cost (e.g., memory, processing resources,
and increased complexity). Here, α is controllable such that
with a larger value, an excessive increase in the number of
groups can be prevented. As different federated learning tasks
have different preferences on the average idle time and group
creation cost, we define a non-negative parameter α to adjust
the preference in the objective function. A larger α indicates
that the root NWDAF is not particularly concerned about
average idle time and vice versa. On the other hand, as the α
increases, optimal number of m decreases due to the increased
cost of m. Furthermore, the number of m˚ also increases with
the increased number of MEC servers. In [30], the authors
defined the objective function as two parts: The average time
cost and the the average energy consumption as the weighted
sum of cost as αT ` E, where α is the weight of quality of
experience (QoE), α ą 0.

Based on the cost function (7), we define the multi-objective
optimization problem as

min
bi,j ,m

Cpbi,j ,mq “
ÿ

j

ÿ

i

tidlei,j
I

` α ¨ m, (8)

s.t. :
ÿ

j

bi,j “ 1, (9)

bi,j P t0, 1u, (10)

1 ď m ď Mmax, (11)

where in (9) and (10), bi,j should be a binary value such as a
0 or 1. In addition, the MEC server should be associated with
a single group rather than with multiple groups. In addition,
m is the total number of groups to be created between 1 (the
same as with the cluster without a group) and Mmax. Here,
the maximum value Mmax should be less than or equal to I{2
because we assume that in each group, there should be at least
two MEC servers.

B. Proposed FedGM Scheme

In this subsection, we propose an FedGM scheme that solves
the above optimization problem. Because the optimization
problem has the form of a binary integer variable and a



SOLAT et al.: A NOVEL GROUP MANAGEMENT SCHEME OF CLUSTERED... 485

Fig. 2. Genetic process.

Fig. 3. Implementation guideline of the proposed FedGM on Kubernetes
platform.

floor function, the formulated problem is a challenging non-
convex problem. In our formulated problem, the value of the
objective function changes by varying m and bi,j , which can
be converted into multiple potential solution spaces. As shown
in Fig. 2, a genetic algorithm can be considered a suitable
heuristic algorithm for this non-convex problem with multiple
potential solution spaces [31], [32].

To achieve an efficient design, by knowing that the search
space for m is relatively small, we provided an exhaustive
search-based genetic algorithm. The entire procedure of the
genetic algorithm is summarized in Algorithm I. With m
given in line 1 for an exhaustive search, several chromosomes
V alidationCheck pCHq indicating bi,j are combined to form
a population POP ; this population set is called a generation in
line 2. To satisfy the constraints in the optimization problem,
the chromosomes should be validated in lines 3 and 15
using a CH . Over the generations in line 5, the offspring
chromosomes are generated by combining the two parent
chromosomes of the current generation to optimize the fitness
function value. The specifications are as follows.

‚ Fitness function value: The negative of cost function at
the optimization problem (8) becomes the fitness function
value F in the Algorithm I.

‚ Selection: The selection procedure is conducted to pro-
duce the next generation of offspring by selecting a genet-
ically superior parent (line 6). Here, we utilize the roulette

selection as a stochastic selection approach, wherein the
probability for the selection of an individual is propor-
tional to its fitness value. Thus, the RouletteSelection
function is a function of CH , F , POP , and rselect,
where rselect p0 ď rselect ď 1q is the selection ratio.
Thus, the number of chromosomes in yCH is controlled
by POP ¨ rselect.

‚ Crossover: The crossover procedure produces better off-
spring Ch0 for the next generation by combining two
parent chromosomes pChp1, Chp2q (lines 9–11). Here,
we utilize the uniform crossover, wherein each bit is
chosen from either parent with equal probability.

‚ Mutation: To avoid the local optimum, if the condition
in line 13 is satisfied, the genetic algorithm performs a
mutation operation on the chromosome.

1) Summary of the general procedure for the proposed
algorithm: Based on this procedure as shown in Fig. 2,
our proposed genetic algorithm is conducted on the man-
agement module in the root NWDAF section of core net-
work. By implementing the binary variable as input values
of the genetic algorithm based on group association of the
MEC servers (bi,j). Each binary variable is a gene in each
chromosome, we generate the initial population (0) randomly
as represented (line 2). Then in (line 3) we apply the Val-
idationCheck on the generated population and after getting
acceptance, by running the RouletteSelection with the priori-
tized fitness value in (line 6); we select two chromosomes as
parents (lines 8–10). By applying the UniformCrossover on
the parents, we conduct the mutation step (line 11). Then, we
conduct the ValidationCheck again on the chromosomes before
generating the population (1) (line 15). Finally, the first round
ends and we send the chromosomes to the second round to
create a new generation (lines 18–21). This general process
will be iterated until the maximum number of the optimal
fitness value for chromosomes (optimal association rule) is
reached (lines 22–24).

Finally, after the algorithm converges, the suboptimal chro-
mosomes Chopt,m˚ and m˚ are returned as output S.

C. Discussion on Implementation of the Proposed FedGM on
Virtualization Platform : Kubernetes

For practical concern, this subsection provides discussions
on how to implement the proposed FedGM on Docker based
Kubernetes platforms. Similar to our previous study of [33],
the proposed FedGM can be implemented on Kubernetes
platform which includes a master and two nodes. Fig. 3 shows
the master represented as the root NWDAF of core network,
and the two other nodes represented as two aggregator nodes
of two clusters of MEC servers with leaf NWDAF for each
MEC server which represents for local training. The master
is responsible for operating the two other nodes using Kuber-
netes, and after receiving the local updates from clusters, first,
aggregates and then, updates the global model. Additionally,
each of two nodes is responsible for running pods. Inside a
pod, there is a container which has the FedGM global model
that receives from the master. Therefore, the pod conducts
local training by running the FedGM on the container.
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Algorithm 1 Proposed FedGM
Input: I , Mmax, ti, POP , G
Output: Best chromosome Spb˚

i,j ,m
˚q

1: for m Ð 1 to Mmax do
2: CH Ð tChi|@i P t1, ¨ ¨ ¨ , POP uu randomly gener-

ated
3: CH Ð V alidationCheckpCHq

4: F Ð tεpChiq|@Chi P CHu

5: for g Ð 1 to G do
6: yCH Ð RouletteselectionpCH,F, POP, rselectq

7: CH Ð yCH
8: for o Ð 1 to POP ¨ p1 ´ rselectq do
9: Chp1 P yCH

10: Chp2 P yCH{Chp1

11: Cho Ð UniformCrossoverpChp1, Chp2q

12: if Up0, 1q ď rmutate then
13: Cho Ð MutationpChoq

14: end if
15: Cho Ð V alidationCheckpChoq

16: CH Ð CH Y tChou

17: end for
18: F Ð tεpChiq|@Chi P CHu

19: end for
20: pFopt,m, Chopt,mq Ð pmaxF, argmax

Ch
F q

21: end for
22: pFopt,m

˚q Ð pmaxFoptm , argmax
m

Fopt,mq

23: S Ð pChopt,m˚ ,m˚q

24:
25: return S

In the following, we will describe the FedGM implementa-
tion process that works with the FL approach. First, the master
sends the initial global model to the two nodes (clusters). Then,
the MEC servers located in the different groups of each node
also save the initial global model (The details of the process
have already been described in the previous sections). After
updating the local models based on the initial global model
by MEC servers and sending back to the aggregation nodes
of the master; aggregation node of each cluster aggregates the
updated local models received from the group in each cluster.
Finally, the master updates the global model and sends new
global model to all nodes. This process will be repeated until
the final global model converges to the target accuracy.

V. PERFORMANCE EVALUATION

This section provides the simulation results verifying the
effectiveness of the proposed FedGM under various parameter
settings. We set up several benchmark algorithms: 1) a clus-
tered FL without group management, denoted as benchmark 1,
and 2) two variants of a clustered FL with group management
using different combinations of m and bi,j , denoted as bench-
marks 2 and 3. Specifically, in benchmark 2 (benchmark 3),
the values of m and bi,j can be Mmax (the optimal value) and
a random value (the optimal value), respectively.

A. Evaluation of Proposed Cost Model
Fig. 4(a) depicts how Algorithm 1 for the proposed FedGM

converges to the optimum fitness value for minimizing the
objective function according to rselect over the generations.
The constant settings of the proposed fitness model were
derived using a Monte Carlo simulation with 20 random sam-
ples, where fmin and fmax were 1 and 5 GHz, respectively.
We can observe that the proposed FedGM converges to a
specific value as the generation is iterated, regardless of rselect.
Here, if rselect is small (e.g., 0.10), the cost value is large
because it may fall into the local optimum. This is because a
small value of rselect indicates the selection of few parental
chromosomes. Fig. 4(b) shows the effect of the proposed
scheme with different values of α (0.01, 0.1, 0.5, and 0.9)
in a cluster considering different number of MEC servers (6,
10, 20). As the α increases, optimal number of m decreases
due to the increased cost of m. Furthermore, the number of
m˚ also increases with the increased number of MEC servers.

Fig. 5(a) demonstrates the effect of the proposed FedGM on
the basis of the proposed cost model. The evaluation of the
proposed cost model (C) was conducted using a Monte Carlo
simulation with 20 random samples (i.e., random settings of
[1 MB, 5 MB]). As shown in Fig. 5(a), the proposed FedGM
outperforms the benchmarks: Compared to benchmark 1 (with-
out group management), significant gain can be achieved
in terms of C, as shown by the dashed line. This result
is attributable to the fact that by introducing the proposed
grouping management with an optimal number of groups to
be created and a group association of the MEC servers, which
minimizes the average idle time and the group creation cost
over such servers, the MEC servers are able to maximize
the time spent on useful local training. As mentioned in
benchmark 2, the number of groups to be created is maximum
(half of the MEC servers), which is obvious that the cost
is lower than benchmarks 1 and 3, respectively. The cost of
benchmark 2 is especially less than benchmark 3 because of
the maximum number of groups. However, compared with the
proposed scheme, benchmark 2 has much cost value because
the bi,j is random, while the proposed scheme optimizes bi,j
to obtain an optimal value. Correspondingly, Fig. 5(b) shows
the impact of the performance of proposed FedGM model
on the average idle time considering the different number of
MEC servers (6, 10, 20) based on iterations. The average
idle time in benchmark 1 has the highest value compared
to other cases since there is no group management in the
cluster. And, since benchmark 2 and 3 are not jointly optimized
in terms of both m and bi,j , the proposed FedGM achieves
the lowest average idle time. The performance gap compared
to the benchmarks increases as the number of MEC servers
increases. Fig. 5(c) demonstrates how optimal m˚ is obtained
according to the number of MEC servers. Here, the proposed
FedGM, by alleviating excessive number of m, suitable m is
obtained to balance between the average idle time and the cost
of m.

B. Evaluation of Accuracy
In this subsection, we describe the accuracy the evaluation

conducted to address the communication rounds versus the



SOLAT et al.: A NOVEL GROUP MANAGEMENT SCHEME OF CLUSTERED... 487

Fig. 4. (a) Convergence analysis of the proposed scheme according to rrselect. (b) Performance of the proposed scheme according to α.

Fig. 5. (a) Performance of proposed cost model (considering different number of MEC servers). (b) Performance of the proposed scheme according to average
idle time. (c) Performance of the proposed scheme according to m˚. (d) Prediction results on the (a-upper) Milano dataset and (b-lower) Trento dataset.

TABLE III
PREDICTION PERFORMANCE COMPARISONS AMONG DIFFERENT METHODS

IN TERMS OF MSE AND MAE ON TWO DATASETS.

Methods Milano Trento
MSE MAE MSE MAE

Lasso 0.4380 0.5475 5.9121 1.5391
SVR 0.1036 0.2220 5.9080 1.0470

LSTM(Distributed) 0.1697 0.2936 4.6976 1.1193
LSTM(Centralized) 0.3681 0.4588 6.4016 1.5196

FedAvg 0.1096 0.2319 4.7988 1.0668
FedDA 0.1033 0.2211 2.4473 0.7471

FedGM(Proposed) 0.1026 0.2207 2.4068 0.6050

accuracy of the proposed FedGM. The proposed FedGM and
all benchmarks were implemented based on FedDA [11],
which is the latest FL implementation adopted for mobile

traffic prediction. In our practical evaluation, as in [11], we
utilized the dataset for the mobile traffic prediction simula-
tion, which comes from the Big Data Challenge launched
by Telecom Italia and is mainly composed of call detail
records (CDR) [34]. Specifically, there are two datasets of
two areas in Italy: Milano (a grid with 10,000 cells) and
Trento (a grid with 6,575 cells). In the dataset, we only utilized
mobile traffic corresponding to Internet services. We randomly
selected 20 MEC servers located in the same cluster from
each dataset and conducted experiments on them. We used the
first 7 weeks’ worth of traffic to train the prediction models
and applied the traffic from the last week for the test round
with 8,750 and 5,753 training data and 1,250 and 822 testing
data for Milano and Trento, respectively. The experimental
results of various prediction methods are presented in Table III.
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Fig. 6. Performance of proposed cost model (considering different levels of
CPU frequency over MEC servers).

We implemented Lasso, SVR, LSTM, FedAvg, FedDA, and
FedGM (the proposed scheme) and compared their results in
Table III to provide a clear comparison between the different
methods. (Overall, it can be observed that the proposed
FedGM method outperforms all the other methods in terms of
both MSE and MAE on both datasets. Specifically, the FedGM
method achieves an MSE of 0.1026 and 0.2207 and an MAE of
0.6050 and 2.4068 on Milano and Trento datasets, respectively.
In contrast, the other methods, such as Lasso, SVR, and LSTM
models, show higher MSE and MAE values, indicating lower
prediction accuracy. Therefore, the proposed FedGM method
seems to be a promising approach for predicting outcomes
on these datasets.) Additionally, it is worth mentioning that
the Trento dataset exhibited a higher variance between data
in most parts of the Internet section compared to the Milano
dataset, despite similar settings. This observation suggests that
the two datasets have different distributions. However, due to
the higher number of data points in the Milano dataset, better
correlations and results were obtained for the Internet section
of the Milano dataset. Overall, the proposed scheme demon-
strated superior performance compared to other algorithms,
which can be attributed to its optimal number of groups and
group creation cost.

In Fig. 5(d), prediction results of the Internet traffic volume
of randomly selected MEC servers on the (a-upper) Milano
dataset and (b-lower) Trento dataset are given. By observing
Fig. 5(d), we can tell that the proposed FedGM obtains a con-
sistent and similar prediction performance as the benchmarks
while predicting the ground truth well. Furthermore, Fig. 6
displays the minimum and maximum CPU frequencies of 6
MEC servers in the test dataset from the ’Internet’ section of
Milano and Trento datasets. The results indicate that when the
variance is in the range (Min.: 42432.16 & Max.: 402265.69),

the variance value in each case was as follows:
‚ Low variance: 14675.32
‚ Medium variance: 22716.87
‚ High variance: 94736.53
Based on the data, it can be concluded that as the variance

of the CPU frequencies increases, the cost function decreases.
This implies that a higher variance in CPU frequencies re-
sults in a more efficient allocation of tasks to MEC servers.
Moreover, it is important to note that this factor affects
latency (idle time). Additionally, as shown in Fig. 7, we
tested the R-squared score for the prediction accuracy of the
proposed FedGM and the benchmarks with respect to the
communication rounds, where the R-squared score represents
the exactness by reflecting how well the ground-truth values
are anticipated as a promising statistical measure [35]. Specif-
ically, as shown in Figs. 7(a) and (b), we can observe that the
proposed FedGM achieves a higher accuracy on both datasets
compared to the other benchmarks. Its advantages are clearer
on the Trento dataset. More importantly, the proposed FedGM
requires fewer communication rounds to achieve a certain
prediction accuracy than the other benchmarks. In Fig. 7(a),
after 10 communication rounds, the proposed FedGM can
achieve and accuracy of 0.92 for Internet traffic. For bench-
marks 2, 3, and 1 during this round, the accuracies for achieved
Internet traffic were 0.86, 0.83, and 0.81, respectively. In
addition, as shown in Fig. 7(b), the proposed FedGM has a
better R-squared score than other benchmarks throughout the
communication rounds.

Moreover, we also tested the root mean squared er-
ror (RMSE) for the prediction accuracy of the proposed
FedGM and the benchmarks, where the RMSE is a useful
metric for evaluating the overall performance of a regres-
sion model, taking into account both accuracy and precision.
Fig. 8(a) presents the RMSE results for benchmarks 1 to 3
and the proposed scheme on the Milano dataset. The proposed
scheme achieved the lowest RMSE of 0.0971, outperforming
benchmarks 1 to 3 which achieved RMSE values of 0.1020,
0.0983, and 0.0998, respectively. Similarly, in Fig. 8(b) on
the Trento dataset, the proposed scheme achieved the lowest
RMSE value of 0.1384, while benchmarks 1 to 3 achieved
RMSE values of 0.1495, 0.1407, and 0.1478, respectively.
These results demonstrate the superior predictive performance
of the proposed scheme compared to the existing benchmarks
on both datasets.

Finally, we can conclude that the proposed FedGM achieves
better convergence speeds while providing a similar or better
prediction accuracy, depending on the dataset, by introducing
optimal group management into the cluster.

C. Discussion

It is possible that if stragglers have meaningful data that gets
excluded, this could lead to a loss of accuracy. Nevertheless,
our proposed clustered FL group management scheme aims to
minimize the impact of stragglers by optimizing the group as-
sociation of MEC servers and reducing their average idle time.
This approach ensures that the contributions of all participating
devices, including stragglers, are efficiently utilized during the
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Fig. 7. Prediction accuracy versus communication rounds: (a) Milano and (b) Trento.

Fig. 8. Comparing prediction accuracy across multiple benchmarks: (a) Milano and (b) Trento.

local training process. By optimizing the group association of
MEC servers, the proposed scheme also reduces the likelihood
of idle time, which is an important factor in minimizing the
impact of stragglers. Moreover, the proposed scheme allows
for flexibility in the number of groups created, which can help
mitigate the impact of stragglers. By creating multiple groups,
the scheme can balance the workload across different groups
and reduce the likelihood of any one group being heavily
impacted by stragglers. This, in turn, can improve the overall
convergence time and accuracy of the FL model.

VI. CONCLUSION

In this study, to improve the convergence speeds for mobile
traffic prediction by alleviating the straggler impact due to the
heterogeneity of MEC servers, we developed a FedGM scheme
that conducts group management through the optimal control
of i) the number of groups to be created and ii) the group

association of MEC servers. Our simulation results for real-
world mobile traffic datasets show that the convergence time
of the proposed FedGM is lower than that of the benchmarks.
The optimization problem was designed using a non-convex
problem, and a genetic-based heuristic approach was proposed
for determining a suboptimal solution. By reducing the aver-
age idle time to increase the workload of the MEC servers
under two real-world mobile traffic datasets, the experimental
results showed that FedGM outperforms previous state-of-the-
art methods in terms of convergence speed with an acceptable
loss of accuracy.
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