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Analysis of Analog and Digital MRC in Massive
MU-MIMO Systems over Correlated Channels

Shuang Li, Peter J. Smith, Pawel A. Dmochowski, and Jingwei Yin

Abstract—While digital multi-user (MU) maximal ratio com-
bining (MRC) is well understood, relatively few analytical results
exist for analog MU-MRC. For example, it has recently been
shown that MU system performance is highly dependent on
the correlation model used, but the scope is limited to digital
processing. Thus, in this paper we compare the performance of
analog and digital MRC, focusing on the effects of correlation. We
begin by deriving the expected signal and interference powers,
demonstrating that the signal-to-interference ratio decreases with
correlation when users have the same correlation matrices, while
it increases when their correlation matrices are different. These
finite system results are then extended by deriving asymptotic
signal-to-interference-and-noise ratio expressions for both analog
and digital MRC for the benchmark scenarios of uncorrelated
and perfectly correlated Rayleigh channels. Here, we once again
demonstrate that the performance is critically dependent on the
correlation scenario.

Index Terms—Analog MRC, correlation, digital MRC, MU-
MIMO.

I. INTRODUCTION

MASSIVE multiple user multiple input multiple output
(MU-MIMO) is a key technique for future broadband

networks as it provides many benefits. Large-scale antenna
systems can increase system capacity and improve energy
efficiency on the order of 10 times or more simultaneously
[1]. They not only reduce transmit power but also aver-
age out small-scale fading as random matrices start to look
deterministic, which also offers benefits in robustness and
reliability [1]. However, when the system is able to serve more
users due to the number of antennas increasing at the base
station (BS), the resulting interference among users can have
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a negative impact on the overall system performance. Zero-
forcing (ZF) can suppress the inter-user interference at the cost
of more computational complexity. For example, the matrix
inverse required by ZF has a complexity order of O(K3)
where K is the number of user data streams. Thus, taking
communication overheads and complexity into consideration,
simplified processing is required.

Among linear processing techniques, digital maximal ratio
combining (MRC) and analog MRC1, due to their simplicity
and efficiency, are more practical in massive MU-MIMO
systems. The two methods passively reduce interference by
taking advantage of favourable propagation2. An additional
benefit of MRC is its suitability to distributed systems - the
processing can be performed independently at each antenna
cluster, without additional information exchange [2]. Analog
MRC, by utilizing only one radio frequency chain, further
reduces hardware cost and power consumption compared with
digital MRC. Due to the presence of only a single RF-chain,
the average spectral efficiency of massive MIMO systems with
pure analog processing is less than the digital counterpart
due to the inability to weight the amplitude of the incoming
signal. However, despite this disadvantage, most of the current
commercial 5G-NR street-macro and micro-cellular solutions
within the FR2 bands are based on analog processing [3].
Hence, it is important to analyze analog processing. We note
that most analytical work concerning analog MRC is from
the perspective of modulation, outage probability and bit error
probability [4]–[11].

Since there are more antennas which are closely-spaced
in one physical location, massive MIMO suffers more from
spatial correlation than conventional MIMO systems [12].
Although some research shows that system performance is
critically dependent on the type of correlation model, they
demonstrate this using simulations rather than mathematical
analysis.

Although the asymptotic behaviour of large systems with
correlation (equal for all users) has been well studied (see [2],
[13], [14]), the effect on performance is not straightforward.
Some studies demonstrate a negative impact [15], [16] and
others suggest a positive impact [17], [18]. The above studies
assume equal correlation among users. Recently, the impact
of correlation on system performance has been shown to be

1Analog MRC is also known as equal gain combining (EGC) in classical
literature. We chose the term analog MRC in order to align the work with
hybrid processing literature.

2Favourable propagation refers to the scenario where the number of BS
antennas becomes large, causing the user channels to become orthogonal
automatically. This enables simple, linear processing techniques, such as
MRC, to maximize the system capacity.
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highly dependent on the correlation model [19], [20]. Fur-
thermore, results and measurements in [20] demonstrate that
correlation variability among users enhances the performance
of digital MRC. It is intuitively clear that equal correlation
structures across users hinders performance as similar statistics
implies more similar channels and increased interference.
However, this understanding is relatively recent. Many papers
still model a multi-user system with equal correlation matrices
per user (see the example references [21]–[24]). It is also well
known that the level of correlation can impact on system
performance both positively and negatively, depending on
the processing. However, the joint effect of correlation level
and variability across users is little studied. Hence, we were
motivated to further explore the impact of both correlation
variability and the joint effects of correlation variability and
level.

Hence, in this paper we provide new insights into the impact
of correlation (including its heterogeneity) on the SINR and
spectral efficiency (SE) behaviour of digital MRC and the first
such results for analog MRC. Specifically,
• We derive closed form expressions for the expected

signal and interference power, and use these to show that
the signal-to-interference ratio (SIR) behaviour is highly
dependent on the correlation heterogeneity across users.

• We derive a closed-form SIR expression based on the
exponential correlation model. The 3D surface plots
based on this expression give great insight into the
circumstances where high correlation can improve system
performance. We also show similar behaviour under the
one-ring correlation model.

• We derive new asymptotic results for analog and digital
MRC SINR in Rayleigh fading for the benchmark sce-
narios of uncorrelated and perfectly correlated channels,
when both the number of users and antennas go to infin-
ity. For the latter, the system performance suggests that
digital and analog MRC would have the same asymptotic
behaviour. For general correlated channels, the limits
are shown to be critically dependent on the correlation
heterogeneity, specifically, correlation is detrimental with
equal correlation, but beneficial with variation across
users. Depending on the assumptions, the resulting SINR
can either vanish in the limit or converge to a constant.
For uncorrelated channels, from the derived expression
of SINR for i.i.d. Rayleigh fading, around 21.5% per-
formance loss occurs with analog MRC compared with
digital MRC.

II. SYSTEM MODEL

We consider an uplink massive MIMO system with N
antennas serving K single antenna users. The N × 1 channel
vector for user i can be written as hi = R1/2

i ui, where
ui ∼ CN (0, I), Ri = βiΣi, Σi is the N × N spatial
correlation matrix and βi is the large-scale link gain. As we
are analysing convergence issues under three scenarios, we are
not modeling the link gain based on classic path-loss and log-
normal shadowing because the substantial variation caused by

shadowing will make it inconvenient to see the limiting effects.
We adopt a similar approach to that in [14] to counter this
problem. We have two models for βi, equal and unequal power
for each user. We use the equal link gain case as a reference
and we assume β = 1 for all users. For the unequal case, we
set β1 = 1 for the desired user and for the interfering users,
we select βl from the exponential decay function Ae−λx such
that the average interference power is equal to β1. As there is
no zero link gain in practice, we guarantee a minimum link
gain by cutting off the least 10% values of Ae−λx, which
means βl has a range of [(1/10)A,A]. Hence, βl is given
by βl = Ae−(l−2)λ. This model gives K − 1 values of βl
decaying exponentially over [(1/10)A,A]. The channel matrix
is H = [h1h2· · ·hK ]. We assume perfect channel knowledge
at the BS and equal transmit power, Pt, for each user. Thus,
the received signal at the BS can be expressed as

y =
√
PtHs + n, (1)

where n ∼ CN (0, σn
2I) is white Gaussian noise, s is the data

symbol vector from the K users and E[ssH ] = I. Without
loss of generality, σ2

n is assumed to be 1. The signal after
combining at the BS to detect the ith user is given by

ỹi =
√
PtgH

i hisi +
√
Pt

K∑
l=1,l 6=i

gH
i hlsl + gH

i n, (2)

where gi = hi for digital MRC and gi = ĥi for analog MRC,
where ĥi = exp(j∠hi) and ∠hi indicates the vector of angles
of hi. The corresponding SINR is given by [25]

SINRi =
Pt|gH

i hi|
2

Pt
∑K
l=1,l 6=i |gH

i hl|2 + gH
i gi

. (3)

To enable the analysis, we apply the following com-
monly used approximation: if X =

∑
Xi and Y =∑

Yi are both sums of non-negative random variables, then
E [log2 (1 +X/Y )] ≈ log2 (1 + E[X]/E[Y ]) [26]. Indepen-
dence between X and Y is not required and the result becomes
more accurate when the number of the summation terms in X
and Y is large [26]. This behaviour is due to the law of large
numbers [26] where the numerator and denominator approach
their mean values and their variances become small. On the
uplink, using (3), this approximation gives the per-user spectral
efficiency of

E[R] ≈ log2

1 +
PtE|gH

i hi|
2

PtE
[∑K

l=1,l 6=i |gH
i hl|2 + gH

i gi
]
 . (4)

The expression in (4) allows for the analysis of achievable
rates for linear processing schemes, such as matched filter
(MF) ZF, minimum mean squared error (MMSE) and to gain
new insights into their performance, in particular the effects
of correlation.

The expectation of the signal and interference terms in (4)
for digital MRC are, respectively, given by [27]

E
[
Pt|gH

i hi|
2
]

= Ptβ
2
i [tr(Σ2

i ) +N2], (5)
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E
[
Pt

∑
l 6=i

|gH
i hl|2

]
= Ptβi

∑
l 6=i

βltr(ΣiΣl). (6)

The relationship between correlation and performance is
seen in (5) and (6) via the terms tr(Σ2

i ) and tr(ΣiΣl). To
explore this relationship, consider the exponential correlation
model in [28] where (Σi)rs = ρ|s−r|exp(j(s − r)φi), so
that users have the same amplitude correlation parameter, ρ,
but user specific phases, φi ∼ U [0, 2π]. Using this model,
straightforward algebra allows tr(ΣiΣl) to be written as (7),
where ∆ = φi−φj . Obviously, tr(ΣiΣl) is a function of ρ and
∆. Less obviously, the relationship between interference and
ρ is different for different values of ∆. To see this, consider
the two special cases of (7):

tr(ΣiΣl) =
N(1−ρ2)(1+ρ2)+2ρ2N+2−2ρ2

(1− ρ2)2
, ∆=0, (8)

tr(ΣiΣl) =
N(1−ρ8)+4ρ4−4(−1)N/2ρ2N+4

(1 + ρ4)2
, ∆=

π

2
, (9)

where (9) is for the case of even N . When the phase pa-
rameters are aligned (∆ = 0), the correlation matrices are
identical, the first numerator term of (8) dominates and the
interference increases with ρ. When the two phases are or-
thogonal (∆ = π/2), the first numerator term in (9) dominates
and the interference decreases with ρ. Hence, increasing the
size of the correlation can have opposite effects when users
experience the same correlation matrix (φi = φj) and when the
correlation matrices differ (φi−φj = π/2). Equivalent results
to (5) and (6) for analog MRC are available in [25] but are
given in terms of Gaussian hypergeometric functions which
make interpretation difficult. Hence, we look at the extreme
cases of zero and perfect correlation in Section III.

III. ASYMPTOTIC SINR ANALYSIS

We derive the asymptotic SINR for analog and digital MRC
under the two benchmark scenarios of i.i.d. and perfectly
correlated Rayleigh fading. We assume N and K grow at the
same rate, so that α = N/K is fixed and this asymptotic
regime is described by limN→∞. The derivations require the
strong law of large numbers (S.L.L.N), the version given in
[29, Th. 5.4.3] (Result 1) being adequate for these proofs.

Result 1: If X1, X2, · · · are independent with fi-
nite means µ1, µ2, · · · and variances σ2

1 , σ
2
2 , · · ·, then

(1/L)
∑L
n=1

Xn
a.s.−−→ µ, a.s. L −→ ∞, where µ =

limL→∞

(
(1/L)

∑L
n=1

µn

)
if
∑L
n=1

(1/L2)Var(Xn) < ∞
[29, Th. 5.4.3].

A. Asymptotic Analysis for i.i.d. Rayleigh Fading
First, for digital MRC, from (3), the interference power is,

Pt

K∑
l 6=i

|hH
i hl|2 = Pt

K∑
l 6=i

hH
l hihH

i hl

=

K∑
l=1,l 6=i

βiβluH
l diag{uH

i ui, 0, 0, · · ·}ul

=

K∑
l=1,l 6=i

βiβl|ul1|2|uiuH
i |. (10)

In (10), ul1 is the first element of ul and the second equality
follows from the rank-1 eigen-decomposition of hihH

i . The
desired signal power is Pt

(
hH
i hi
)2

= Ptβ
2
i (uH

i ui)2 and the
noise power is hH

i hi = βiuH
i ui. Substituting into (3) and

simplifying gives

SINRD
i =

PtβiuH
i ui/N

Pt(K−1)
N

∑K
l 6=i

βl|ul1|2
K−1 + 1

N

, (11)

where D denotes digital MRC. Using the S.L.L.N (Result 1),
the numerator of (11) converges almost surely (a.s.), giving

lim
N→∞

βi

(
|uiuH

i |
)

N
= lim
N→∞

βi
N

N∑
r=1

|uir|2
a.s.−−→ βiE(|ui1|2) = βi.

(12)
Similarly, the denominator of (11) converges almost surely,

lim
K−1→∞

∑K
l=1
l 6=i

βl(ul1)2

K − 1

 a.s.−−→ β̄.

Thus, finally we get

lim
N,K→∞

SINRDi =
βi
β̄
α, (13)

where β̄ = limN→∞
∑K
i=1 βi/K is the asymptotic mean of

the link gains. For the equal β case, (13) can be written as

lim
N,K→∞

SINRDi = α. (14)

For analog MRC, similar steps lead to the result

SINRA
i =

Ptβi|ûH
i ui/N |

2

Pt(K − 1)

K − 1

∑K
l 6=i βl

∣∣∣∣∣ ûH
i ul
N

∣∣∣∣∣
2

+
1

N

, (15)

using ĥi =
√
βiûi. For the numerator, the S.L.L.N gives

ûH
i ui
N

=

N∑
r=1

|uir|
N

a.s.−−→ E(|uir|) = Γ

(
3

2

)
=

√
π

2
. (16)

For the interference term, we note that
K∑

l=1,l 6=i

βl|ûH
i ul|2 =

K∑
l=1
l 6=i

βluH
l diag{N, 0, 0, · · · }ul (17)

=

K∑
l=1,l 6=i

βl|ul1|2N, (18)
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2ρ2N+2
(
cos((N + 1)∆)− 2ρ2cos(N∆) + ρ4cos((N − 1)∆)

)
+N(1− ρ8) + 4ρ4 + cos(∆)

(
(2N − 2)ρ6 − (2N + 2)ρ2

)
(1− 2ρ2cos(∆) + ρ4)2

.

(7)

which follows from the rank-1 eigen-decomposition of ûiûH
i .

Thus, from the S.L.L.N, the interference term in (15) is

Pt
K − 1

N

K∑
l=1,l 6=i

βl
|ul1|2

(K − 1)

a.s.−−→ Pt
β̄

α
. (19)

Substituting (16) and (19) into (15), we obtain

lim
N→∞

SINRA
i =

πβi
4β̄

α. (20)

Compared with digital MRC, analog MRC suffers a (1 −
π/4)×100 ≈ 21.5% performance loss in the asymptotic SINR.

B. Asymptotic Analysis, Perfect Correlation, Equal Matrices

Consider the perfectly correlated channel where Ri = βiΣi

and all the elements of Σi equal one. Here, hi = hi1[11· · ·1]T

and ĥi = exp(j∠hi1)[11· · ·1]T . Substituting the perfectly
correlated channels and associated combiners into (3) gives:

SINRDi =
Pt(|hi1|2|N |)2

Pt
∑K
l=1
l 6=i

[|h∗i1hl1N |]
2

+ |hi1|2N

=
Pt|hi1|4N2

Pt
∑K
l=1
l 6=i

[|hi1|2|hl1|2N2] + |hi1|2N

=
βi|ui1|2∑K

l=1
l 6=i

βl|ul1|2 +
1

PtN

, (21)

and

SINRAi =
Pt|hi1|2N2

Pt
∑K
l=1
l 6=i

[ h∗
i1

|hi1|hl1N
]2 +N

=
βi|ui1|2∑K

l=1
l 6=i

βl|ul1|2 +
1

PtN

. (22)

Thus, SINRA
i = SINRD

i and dividing numerator and denomi-
nator by K, the S.L.L.N gives

SINRA
i = SINRD

i
a.s,−−→ 0. (23)

The SINRs vanish here due to the interference growth which
occurs when all the user channels are aligned.

C. Asymptotic Analysis, Perfect Correlation, Unequal Matri-
ces

Here we investigate two types of correlation structures
for uniform linear arrays. The exponential correlation model
in [28] has a user specific phase, φi ∼ U [0, 2π], for the
correlation parameter and for perfect correlation (amplitude 1).

The correlation matrix is defined by (Σi)rs = exp(j(s−r)φi).
The second model is the classic one-ring model [30], defined
by,

(Σi)rs =
1

AS

∫ θi+AS/2

θi−AS/2
e−j2πd(r−s)sin(θi)dθi , (24)

where AS is the angle spread, θi is the central angle for user
i and d is the antenna spacing. For this model, taking the
limit as the angle spread vanishes gives a perfectly correlated
correlation matrix also defined by (Σi)rs = exp(j(s − r)φi)
but here, φi = 2πdsin(θi). For both models, defining ai =
[1 exp(−jφi) exp(−j2φi) · · · exp(−j(N − 1)φi)]

T allows
the channel vectors to be written as hi = hi1ai. Following the
steps in Section III-B the corresponding SINRs are

SINRA
i = SINRD

i =
|hi1|2∑K

l 6=i |hl1|2
∣∣∣∣aHi al
N

∣∣∣∣2 +
1

PtN

. (25)

From (25), we see that the SINR depends on the limiting
behaviour of the interference component denoted by I . We
explore this limiting behaviour by deriving E(I):

E(I) =
K − 1

N
E(|hl1|2)

1

N
E[|aHi al|2]

−→ µ∞I =
1

α
lim
N→∞

1

N
E[|aHi al|2] (26)

which can be written as

E(I) =
1

α
lim
N→∞

1

N

N−1∑
h=0

N−1∑
k=0

E
[
ej(h−k)φi

]
E
[
e−j(h−k)φl

]
=

1

α
lim
N→∞

{
1 + 2

N−1∑
r=1

(1− r

N
)|E[ejrφi ]|2

}
. (27)

Next, we derive |E[ejrφi ]| for the two correlation models.

1) Exponential Correlation: The model in [28] has φi ∼
U [0, 2π] for which E[ejrφi ] = 0 and E(I) −→ 1/α. For the
more general case where φi ∼ U [a, b],

|E[ejrφi ]| =

∣∣∣∣∣(b− a)−1
∫ b

a

ejrφidφi

∣∣∣∣∣ =
2|sin[0.5r(b− a)]|

r(b− a)

≤ 2/(r(b− a)). (28)

Substituting (28) into (27) we have,

E(I) =
1

α

{
1 + 2 lim

N→∞

N−1∑
r=1

(1− r

N
)|E[ejrφi ]|2

}

≤ 1

α

{
1 +

8

(b− a)2
lim
N→∞

{
N−1∑
r=1

1

r2
− 1

N

N−1∑
r=1

1

r

}}
,

(29)
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where
∑N−1
r=1 1/r2 = π2/6, and

1

N

N−1∑
r=1

1

r
=

log(N − 1)

N
+
γ

N
+
εN−1
N

, (30)

where γ is Euler’s constant and εN−1 ∼ 1/2N . Thus, we see
that the mean interference is finite for all uniform distributions.
For the particular case when [a, b] = [0, 2π], E(I)→ 1/α.

2) One-ring Correlation: Here, we have φi = 2πdsinθi,
where θi ∼ U [0, 2π]. Hence,

E[ejrφi ] =
1

2π

∫ 2π

0

ejr2πdsin(θi)dθi = J0(2πdr). (31)

Substituting (31) into (27) we have µ∞I = (1/α)(1 + 2S),
where

S = lim
N→∞

{
N−1∑
r=1

(
1− r

N

)
[J0(2πdr)]2

}
. (32)

From [31, eq. 10.17.3], for large arguments J0(z) =√
2/πzcos(z − π/4) + O(z−3/2). Hence, S exists (is finite)

if and only if S1 exists, where

S1 = lim
N→∞

1

π2d

N−1∑
r=1

(
1

r
− 1

N

)
cos2

(
2πrd− π

4

)
≥ lim
N→∞

1

π2d

N−1∑
r=1

1

r
cos2

(
2πrd− π

4

)
− 1

π2d
. (33)

Using the double angle formula, the first summation in (33)
can be written as

N−1∑
r=1

1

r
cos2

(
2πrd− π

4

)
=

1

2

N−1∑
r=1

1

r
+

1

2

N−1∑
r=1

1

r
sin(4πrd).

(34)

From [32, p. 43], the second sum in (34) is finite,

1

2

N−1∑
r=1

1

r
sin(4πrd) =

π

2
− 2πd (mod 2π), (35)

and it is well-known that (1/2)
∑N−1
r=1

1/r diverges logarith-
mically. Thus, S1 diverges, causing both S and µ∞I to diverge.
The simulation results in Section IV also support this claim.

D. Exponential Correlation Model Analysis in General

In Section III-B and Section III-C, we have analysed the
asymptotic behaviour under extreme high correlation scenar-
ios. We would also like to study the general behaviour of
Tii/Til, which is the ratio of signal power Tii = tr(Σ2

i ) and
interference power Til = tr(ΣiΣl). For simplicity, we only
consider two users,

Tii
Til

=
tr(Σ2

i )]

tr(ΣiΣl)
. (36)

For the exponential correlation model, we have

Tii =

N∑
i=1

(|ρ|2(i−1) + |ρ|2(i−2) + · · ·+ 1 + |ρ|2 + · · ·

+ |ρ|2(N−i))

=
N(1− |ρ|4)− 2|ρ|2(1− |ρ|2N )

(1− |ρ|2)2
, (37)

and

Til =

N∑
i=1

(|ρ|2ej(φ−θ)(i−1) + |ρ|2ej(φ−θ)(i−2) + · · ·

+ 1 + |ρ|2ej(θ−φ) + · · ·+ |ρ|2ej(θ−φ)(N−i))

=
Ta + Tb + Tc

Td
, (38)

where

Ta =N(1− |ρ|8)− 2N |ρ|2cos[(θ − φ)(1− |ρ|4)], (39)

Tb =− 2|ρ|2cos(θ − φ) + 4|ρ|4 − 2|ρ|6cos(θ − φ), (40)

Tc =2|ρ|2N+2cos[(N + 1)(θ − φ)] (41)

− 4|ρ|2N+4 + 2|ρ|2N+6cos[(N − 1)(θ − φ)],

Td =
[
1 + |ρ|4 − 2|ρ|2cos(θ − φ)

]2
. (42)

Substituting (37) and (38) into (36), we obtain the general ex-
pression of Tii/Til, which allows us to examine the correlation
effect with various correlation coefficients.

E. Analog MRC Correlation Analysis

Next, we consider analog MRC and give new versions of
the results in [25] which allow an interpretation of correlation
effects. From [33, eq.15.3.3, p. 559], we have

2F1(α, β, γ; z) = (1− z)γ−α−β2F1(γ − α, γ − β, γ; z).

Using this transformation formula allows the signal and inter-
ference power terms in (3) and [25] to be written as

E{|ĥ
H

i hi|2}=Nβi +
π

4
βi

N∑
j=1

N∑
k=1

j 6=k

2F1

(
− 1

2 ,−
1
2 , 1; |ρijk|2

)
,

(43)

E{|ĥ
H

i hl|2}=Nβl+
πβl
4

N∑
j=1

N∑
k=1

j 6=k

(ρlkjρijk)2F1( 1
2 ,

1
2 , 2; |ρijk|2).

(44)

Using known results on hypergeometric functions, [33,
eq.15.2.1, eq.15.1.1, and eq.15.1.20] we see that
2F1(−1/2,−1/2, 1; |ρijk|2) and 2F1(1/2, 1/2, 2; |ρijk|2) both
increase monotonically from 1 to 4/π as |ρijk| increases from
0 to 1, making (43)–(44) easier to interpret. We see that the
mean signal power in (43) is an increasing function of |ρijk|.
The interference behaviour depends on the similarity of the
correlation matrices. If Σi = Σl, then ρlkjρijk = |ρijk|2 > 0
and interference grows with |ρijk|. However, if Σi 6= Σl, then
ρlkjρijk is a complex constant and the sum in (44) will not
necessarily grow with |ρijk| as terms may cancel. Again, we
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Fig. 1. E[SINR] vs N for analog and digital MRC; i.i.d. and perfect
correlation, equal and unequal link gains.

see the important property that correlation is detrimental with
equal correlation but can be beneficial with sufficient variation
across users.

IV. NUMERICAL RESULTS

The limiting results in Section III depend on the link gains,
βi. Thus, to examine convergence, we adopt a link gain model
similar to that in [14], [34] where we consider scenarios of
equal and unequal βi values for each user. The equal link
gain case serves as a reference with βi = 1 for all users. The
unequal case is modeled via a simple exponential decay for
the βi’s as described in Section II. The decay is chosen so that
the average link gain is β̄ = 1 and the desired user also has
unit link gain. Fig. 1 shows the mean SINR vs N for analog
and digital MRC with Pt = 1 and α = 2. We plot the mean
rather than the instantaneous SINR to reduce variability and
clearly identify the limits. Both the equal and unequal link
gain scenarios are shown. The top four curves represent i.i.d.
Rayleigh fading for which (14) and (20) give the limits 2 and
π/2 which are verified in the figure. The unequal power case
converges slightly more slowly as the power variation gives
less averaging and stability compared to the equal power case.
The bottom four curves correspond to perfect correlation with
equal correlation matrices. As predicted by the analysis in (23),
the mean SINR decays to zero.

Fig. 2 shows the mean interference of the exponential (top)
and one-ring (bottom) models with perfect correlation and
unequal correlation matrices. Equal link gains, α = 2, and
user specific angles, φi ∼ U [0, 2π], are assumed. In the upper
figure we see E[I] converging to the derived limit. In the
lower figure, we see the interference (obtained by substituting
(31) into (26)) agrees well with the simulated interference and
grows logarithmically with N as predicted. Hence, the limiting
behaviour is entirely different for the two models.

Next, we consider general levels of correlation between the
benchmark results of i.i.d. and perfectly correlated channels.
From (5) and (6), we see that Tii = tr(Σ2

i ) and Til = tr(ΣiΣl)
control the effect of correlation on digital MRC. For the
exponential correlation model, Tii and Til are given by (7)
which is a function of ρ, N and ∆ = φi − φl. In Figs. 3
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Fig. 2. E[I] vs N for perfectly correlated Rayleigh fading with unequal
correlations (exponential-top, one-ring-bottom).

and 4 we plot Til and Tii/Til against ρ and ∆ for N = 32.
The first measures interference while the second gives the size
of the signal term relative to interference, a type of SIR. The
interaction between the amplitude of the correlation parameter
(ρ) and the difference in the phases of the correlation (∆) is
clear. Large amplitude correlation helps the signal relative to
interference and reduces interference, thus enhancing SINR,
unless the phases are very similar (∆ ≈ 0 or ∆ ≈ 2π)
when the SINR is adversely affected by large interference.
Hence, as long as there is phase parameter diversity, increasing
correlation is beneficial to performance. In Fig. 5 and Fig. 6
we plot the equivalent results for the one-ring model. We use
(24) to compute Σi using N = 32 and note that correlation
is controlled by the AS parameter where AS= 0 corresponds
to perfect correlation and correlation drops as AS increases.
User diversity is controlled by ∆θ = φi − φl, the difference
between the central angles of the two users. Figs. 5 and 6 are
symmetric about ∆θ = π as the correlation matrices are the
same for ∆θ = ∆1 and ∆θ = π + ∆1. Otherwise, the trends
are identical to the exponential model where reducing angle
spread (corresponding to increased correlation) is beneficial as
long as there is diversity in the central angles of the users.

In Fig. 7 we show the simulated cumulative distribution
function (CDF) of the mean SE for analog MRC assuming the
exponential correlation structure. The randomness is due to the
variation of drops including path loss and lognormal shadow-
ing effects. The link gains are given by βi = Aζi(d0/di)

γ ,
where di is the distance to the BS and ζi is lognormal
shadowing. There are four users, each with a single antenna,
uniformly located in a cell with the radius of 100 meters.
The unit-less constant A = 30 dB, the reference distance
d0 = 1 meter, N = 32, the pathloss exponent γ = 3.5 and
the standard deviation of shadowing is 6 dB. The transmit
power Pt is chosen to guarantee that 95% of the time the
SNR exceeds 0 dB. As predicted by the analysis, for a fixed
correlation parameter (equal correlation matrices for the users)
increasing the correlation decreases SE, whereas for differing
correlation parameters (unequal correlation matrices for the
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Fig. 3. Til (dB) vs ρ and ∆; N = 32, exponential correlation.

users), correlation improves the SE. The difference in SE
can be very large so we next investigate how much of this
variation is encountered with more realistic ray-based channels
3 based on clusters of scatterers. We adopt the measured
angular parameters in [35]. The number of clusters C = 3,
and the number of subpaths per cluster L = 16. Each subpath
angle of arrival is modeled by a central cluster angle with
a Gaussian distribution (zero mean and a standard deviation
(σc) of 14.4◦) plus a subray offset angle which is Laplacian
with a standard deviation (σl) of 6.24◦. Following [34], the
cluster powers decay exponentially from cluster 1 to cluster
C such that Cc = (1/10)C1 and equal power among subrays
is assumed. We also adopt another two sets of parameters,
C = 2, L = 20, σc = 2◦, σl = 1◦ (narrow spread) and
C = 2, L = 20, σc = 30◦, σl = 10◦ (wide spread), to
compare with the parameters in [35]. From the figure, we can
see that wider angular spreads increase system performance,
which agrees with the results based on Rayleigh channels with
unequal correlations. The SE based on measured parameters
is similar to the Rayleigh results with less extreme values of
ρ. Little change is observed as the angular spread is increased
from σc = 14.4◦, σl = 6.24◦ to σc = 30◦, σl = 10◦ but
considerable losses arise for the very narrow angle spread case
(σc = 2◦, σl = 1◦). Hence, severe losses due to correlation
are likely to be rare, but could exist, for example, in indoor
non-line of sight environments where channels have limited
numbers of clusters and narrow spread.

V. CONCLUSION

We have presented the first analysis of the effects of corre-
lation on analog processing, compared analog to digital MRC
and demonstrated that heterogeneous correlation effects extend
to analog MRC. We have derived the expected signal and
interference power, demonstrating that SIR decreases when
the user correlation matrices are identical, but increases when
they are different. We derived asymptotic SINR expressions
for both analog and digital MRC for benchmark scenarios of

3Ray-based channel models assume that the signal arriving at an antenna
is composed of multiple narrow beams (rays), originating from scattering
clusters, see, e.g. [35].
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Fig. 5. Til (dB) vs ∆ and θ; N = 32, one-ring correlation.

Fig. 6. Tii/Til vs ∆ and θ; N = 32, one-ring correlation.

uncorrelated and fully correlated Rayleigh channels, demon-
strating that the performance is critically dependent on the cor-
relation scenario. We have shown that for uncorrelated fading
the SINR converges to a constant. For fully correlated channels
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SINR converges to zero for equal correlation matrices, whereas
for unequal correlation matrices SINR converges to zero or a
constant, depending on the correlation model.
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