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Index-based Update Policy for Minimizing
Information Mismatch with Markovian Sources

Sunjung Kang and Changhee Joo

Abstract—We consider a scenario where a base station collects
time-varying state information from multiple sources, and makes
system decisions based on the collected information. When the
information update is constrained to one source at a time, the
state information at the base station can be stale and different
from actual state of the sources, in which case the base station can
make a false decision due to the information mismatch (or error).
In this paper, we assume that the update decisions are made at the
base station without current state information, and consider the
problem of minimizing the information mismatch under limited
communication capability. For two-state Markovian source, we
consider two different types of estimators at the base station,
and characterize the optimal update policy. For the symmetric
case, we can obtain the closed-form average cost. Further,
with multiple symmetric sources, we show that the problem is
indexable and obtain the close-form Whittle’s index for the two
different types of estimator.

Index Terms—Remote estimation, restless multi-armed bandit,
wireless networks, Whittle’s index.

I. INTRODUCTION

IN recent years, the applications of real-time monitor-
ing systems and cyberphysical systems, such as drone

monitoring systems and medical monitoring systems, have
been increasing. In these applications, sensors transmit update
packets with time-varying sensing information to a remote
monitor (or a base station/receiver) [1]. The remote monitor
estimates the sources’ states from the transmitted information
and makes system decisions as needed. To this end, keeping
the information fresh through timely updates is critical in these
applications. Although it is ideal to update fresh information
continuously, this is often impractical due to the limitation of
the network resources, which causes the information at the
monitor to be stale. In a commercial IoT systems, a base
station can take the role of the remote monitor. We use the
terms of base station and remote monitor interchangeably,
similarly for the terms of source and sensor.

Regarding the performance metric for information update,
recently the age of information (AoI) has attracted much
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attention [2], [3]. AoI is a performance metric measuring the
freshness of information, which is the time elapsed since the
most recently generated packet received by the receiver was
sampled at the source. In [4], [5], the authors investigate the
optimal update rate at a source to minimize the AoI and show
that the zero-waiting update policy is not optimal in some
scenarios (e.g., random transmission time). The state-space
collapse of the AoI under heavy traffic has been observed
in [6]. In [7], the authors develop optimal update policies
for minimizing the re-defined AoI to address the normal and
alarm states of a stochastic process in an energy harvesting
status update system. A scenario where a base station trans-
mits timely information to multiple nodes is studied in [8],
where the AoI minimization problem with multiple nodes is
formulated as a restless multi-armed bandit (RMAB) problem,
and a low-complexity algorithm using Whittle’s index theory
has been developed. In [9], the authors develop the centralized
scheduling policies including Whittle’s index policy to mini-
mize the average AoI under several system constraints. In [10],
the authors analytically show the optimality of Whittle’s index
policy for minimizing the AoI in many-source networks.

Remote estimation has been studied [11]–[18], where the
freshness of information is measured as how close the infor-
mation state between a source and the remote monitor. In [11],
the authors claim that the sampling strategy that minimizes the
AoI does not always minimize the estimation error by taking
an example of a source where information state follows a two-
state Markov chain. In [12], the authors investigate sampling
and scheduling policies to minimize the average AoI in
networks with multiple sources updating a common receiver.
In particular, for two-state Markovian sources, the authors
employ the sample-at-change sampling policy and Whittle’s
index policy for minimizing the AoI as a scheduling policy.
Through simulations, the authors compare the proposed update
policy with the optimal policy for minimizing the estimation
error and show that the proposed update policy is near optimal,
especially with a large number of sources. In [13], the authors
develop Whittle’s index policy for minimizing the uncertainty
of information measured by Shannon’s entropy in networks
where a common receiver is updated by distributed sources
of which states evolve according to a two-state Markov chain.
The authors in [14], [15] study the optimal sampling rate to
minimize the mean square error of information state of the
Wiener-process and Ornstein-Uhlenbeck, respectively. In [16],
[17], the authors consider a scenario where information state
is an independent and identically distributed (i.i.d.) process
and there is a communication cost to transmit information to
a remote estimator. They showed that an optimal policy for
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minimizing the estimation error is of threshold type.
In this paper, we consider a scenario where a base station

collects state information from multiple two-state Markovian
sources, and the information update is constrained to one
source at a time due to the limitation of networks resources.
This model is somewhat simple but captures the essential as-
pects of how the base station has to sequentially select a source
to minimize the information mismatch (or estimation error)
accounting for the Markovian behavior and the communication
cost. Our problem is different from [9], [10], [13] in that this
paper considers the estimation error as a metric to measure
the freshness of information instead of the AoI [9], [10] or the
uncertainty of information [13], and also different from [11],
[14]–[17] in that the base station has uncertainty about not only
future evolution of the information state, but also its history.
Further, unlike [12], where the proposed scheduling policy
minimizes the AoI with the rationale that the estimation error
can be minimized accordingly under the assumption that the
estimation error increases as the AoI increases, this paper does
not use the assumption between the AoI and the estimation
error and aims to design a scheduling policy that minimizes
the estimation error.

We formulate our problem as a partially observable Markov
decision process (POMDP), where the belief state calculated
by the Bayes rule is sufficient statistics. Some POMDP
problem can be solved using multi-armed bandit (MAB)
techniques, in which a scheduler selects one arm (or bandit),
and receives a reward from the chosen arm. The state of arms
can change in a Markovian manner. There are two types of
the MAB process: rested and restless. For the former, only
the chosen arm changes its state and the states of the other do
not, in which case, it is shown that the Gitten’s index policy
is optimal [19]. For the latter, the states of all arms change,
and the transition law of a state can be different between
the chosen arm and the others. It is shown that finding an
optimal solution to this RMAB problem is PSPACE-hard [20].
In [21], Whittle relaxes the RMAB problem, and shows that
if the problem satisfies some condition (or the problem is
indexable), then an optimal solution is an index-type policy
and the index is called Whittle’s index. In [22], the authors
study the sufficient conditions for the indexability for general
source models and develop an algorithm to compute Whittle’s
indices for indexable restless bandits.

It has been shown that Whittle’s index policy that activates
an arm with the highest Whittle’s index (or K highest when
multi-arm activation is allowed), is asymptotically optimal
when the arms are stochastically identical [23], [24]. Further,
it has been shown that Whittle’s index achieves heuristically
near-optimal performance in many applications, including
AoI [8]–[10], dynamic spectrum allocation [24], queueing
system [25], and resource allocation problem [26]. In [27],
the authors study a scenario where each bandit is modeled as
a two-state Markov chain and when an arm is activated, the
player receives a signal with noise, i.e., there is a probability
that the actual state is 0 even when the received signal is 1.

In this paper, we address a wireless scheduling problem to
minimize the information mismatch between the base station
and distributed sources by exploiting Whittle’s index. The

most related studies are [28], [29] that apply Whittle’s index
to an estimation problem with two-state Markov chain model.
Our work is different from [28] in that we aim to minimize the
penalty incurred when the estimated states are different from
the actual states of sources and thus the penalty depends on
both the source state and the estimation, while [28] aims to
maximize the rewards that are incurred when an activated arm
is in a specific state (i.e., rewards depend only on the source
state).

Also, our work is different from [29] in that we investigate
the average cost criterion over infinite horizon while [29]
investigates the discount reward criterion over infinite horizon.
It is known that the infinite sum of discount cost/reward always
converges if the one-step cost/reward is bounded, while the
average cost/reward over infinite horizon can diverge even
when the one-step cost/reward is bounded [30]. Further, the
results of [29] are limited to the case of discount factor
β ≤ 1/2, which implies that the results are applicable only to
severe discounting scenarios, and cannot be extended (e.g., by
taking β → 1) to our problem with the average cost criterion.

Our contributions can be summarized as follows.
• We analytically show that an optimal solution to the

problem of single source with communication cost is
of threshold type, for two different types of estimators.
Further, for the special case of symmetric source, we
obtain the minimum expected average penalty in the
closed form.

• For multi-source scenarios, we model our problem as an
RMAB, and show that our problem of minimizing the
average cost is indexable for symmetric sources, and ob-
tain the closed-form Whittle index. As such, we develop a
low-complexity scheduling algorithm using the Whittle’s
index theory for the information error minimization.

• We show through simulations that our policy achieves
near-optimal performance.

The rest of paper is organized as follows. In Section II,
we describe the system model and formulate our problem.
In Section III, we characterize the optimal policy in a single
source network with communication cost. In Section IV, we
show that our problem is indexable, and obtain a closed-
form Whittle index. We verify through simulations that our
algorithm performs well in Section V, and conclude our work
in Section VI.

II. SYSTEM MODEL

We consider the scenario where a base station collects time-
varying state information from N sources, and makes system
decisions based on the collected information. We consider a
time-slotted system, and at each time slot, the base station
can request state information from at most one source. We
assume that sources are numbered from 1 to N , and each
source can have two states 0 and 1. The state of source i
varies following a Markov process with transition probability
Pi = [p

(i)
00 , p

(i)
01 ; p

(i)
10 , p

(i)
11 ] and it is assumed that the transition

probability is fixed and known to the base station.
Let Si(t) ∈ {0, 1} denote the state of source i at the

beginning of time slot t, and let Di(t) ∈ {0, 1} denote the
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Fig. 1. Structure of time slot.

latest updated state of source i at the base station at time slot
t. S(t) = [S1(t), · · ·, SN (t)] and D(t) = [D1(t), · · ·, DN (t)]
denote their vector, respectively. Let u(t) = [u1(t), · · ·, uN (t)]
denote the action vector in time slot t with ui(t) ∈ {0, 1},
where ui(t) = 1 implies that the base station requests
state information to source i. The base station can request
the information to at most one source1 in a time slot, i.e.,∑N

i=1 ui(t) ≤ 1 for all t. We assume that the communication
between the base station and the sources is reliable, and thus
there is neither loss nor error in the information delivery.
If the base station obtains the information from source i
at time slot t, we have Di(t) = Si(t), and otherwise,
Di(t) = Di(t − 1). Let Ei(t) denote the difference between
actual state and latest updated state of source i at time slot t,
i.e., Ei(t) = |Si(t)−Di(t)|. For source i with ui(t) = 1, we
have Ei(t) = 0 since Di(t) = Si(t). We define the total error
E(t) over N sources at time slot t as E(t) =

∑N
i=1 Ei(t). We

note that the state transition occurs on the boundary of time
slot, and thus Si(t) is determined at the beginning of time slot.
Then the base station makes decision u(t), which determines
D(t) and thus E(t), as shown in Fig. 1.

Let H(t) denote the history of the base station up to time
slot t, i.e., H(t) = {u(1), Sa(1)(1),D(1), · · ·,u(t),Sa(t)(t)
,D(t)} with H(0) = ∅, where a(t) = i such that ui(t) = 1.
A policy π = (π(t))∞t=1 is a sequence of mappings π(t) :
H(t − 1) → u(t). Our objective is to find policy π that
minimizes the expected average error (or mismatch) over
infinite time horizon:

minimize Eπ

[
limT→∞

1
T

∑T
t=1 E(t) | D(0)

]
subject to

∑N
i=1 ui(t) ≤ 1 for all t,

(1)

where D(0) is an initial value at the beginning of the first
time slot.

We consider a belief error vector e(t) = [e1(t), · · ·, eN (t)],
where ei(t) denotes the belief error probability for source i at
time slot t if its state is not updated in time slot t. Specifically,
the belief error evolves according to the Bayes rule as

ei(t) =

{
p
(i)

DD̄
, if ui(t− 1) = 1,

T (i)
D (ei(t− 1)), if ui(t− 1) = 0,

(2)

1Since we are investigating strongly decomposable index policies (e.g.,
myopic index and Whittle’s index), this constraint can be relaxed and our
results can be applied to more general scenarios where K ≥ 1 out of N
sources can update the receiver simultaneously [23].

where D = Di(t − 1), D̄ = 1 −D, and T (i)
D (e) denotes the

one-step belief error

T (i)
D (e) =

{
ep

(i)
11 + (1− e)p

(i)
01 , if D = 0,

ep
(i)
00 + (1− e)p

(i)
10 , if D = 1.

(3)

Note that the base station can compute ei(t) from ui(t − 1),
Di(t−1), and ei(t−1). Also since it makes an update decision
without full knowledge of system states, it can be modeled as
a POMDP. It is known that sufficient statistics for making
optimal decision under POMDP is the belief states, which
is the probability distribution over states and can be updated
using the Bayes rule [31] as in (3).

We formulate the error minimization problem as a RMAB
problem with tuple (Di(t − 1), ei(t)) as a state of arm i
at tth round. If active action ui(t) = 1 is applied to arm
i, state (Di(t), ei(t + 1)) is set as Di(t) = Si(t), and
ei(t+ 1) = p

(i)

DiD̄i
. Otherwise, ei(t+ 1) evolves according to

(3). At each time slot, consider a policy that assigns an index
to each arm, which is a real-valued function of a state of an
arm, and plays (or activates) the arm with the highest index.
Such a policy is called as an index policy. Further, the index
policy is called strongly decomposable if the index of each
arm depends only on the characteristics of the arm. A simple
example of strongly decomposable index policy is the myopic
policy that directly uses ei(t) as an index of arm i at the time
slot t to decide ui(t). This myopic policy generally does not
perform well since it ignores the impact of current action on
future errors. Another strongly decomposable index policy can
be obtained using Whittle’s index [21], which achieves near-
optimal performance in a wide range of applications [8], [12],
[24]–[26], [32]. The main challenge to adopt the Whittle’s
index is the indexability of the problem. In this work, we show
that our problem is indexable when the source dynamics can
be represented by a symmetric Markov chain, i.e., p01 = p10.

III. THRESHOLD POLICY FOR SINGLE SOURCE

As a first step, we obtain an optimal solution to single
source problem with communication (or transmission) cost.
Note that, in the original problem (1), multiple sources are
coupled through the constraint. By considering a dual problem,
we can relax the constraint and decompose the problem to N
per-source problems with communication cost, which can be
interpreted as the Lagrangian multiplier associated with the
time portion that packets are transmitted. We will use the cost
as the index in our decision.

At each time slot, the base station has an option of ei-
ther collecting the state information at communication cost
(active action) or skipping to the next time at the expense
of information inaccuracy (passive action). For notational
convenience, we omit subscript (or superscript) i for the
single source case. Let c ≥ 0 denote the communication
cost that occurs when the base station collects the state
information from the source. Then, the penalty at time slot t is
P (t) = u(t)c+(1−u(t))E(t), and we can define the problem
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of minimizing the expected average penalty over infinite time
horizon as

minimize Eπ

[
limT→∞

1
T

∑T
t=1 P (t) | D(0)

]
. (4)

It is known that a stationary optimal solution to (4) does
not necessarily exist under average cost criterion over infinite
time horizon [33]. In this work, we show the existence of a
stationary optimal policy that solves (4) by considering the
problem with vanishing discounts [28], [33], [34].

To this end, we consider the problem with discounted total
penalty:

minimize Eπ

[
limT→∞

∑T
t=1 β

t−1P (t) | D(0)
]
, (5)

with discount factor β ∈ (0, 1), and show that it always
admits a stationary optimal solution of threshold type. Then,
we show that, for symmetric source, there exists a stationary
optimal policy that solves the original long-term average
penalty problem.

A. Threshold Policy

We first describe a discrete-time Markov Decision Process
(MDP), whose state at time slot t is represented by (D, e). For
each state, the base station has two possible actions, u = 0
(passive action) and u = 1 (active action). If the passive action
is taken, then the state evolves to (D, TD(e)) with probability
1. If the active action is taken with communication cost c,
the state evolves to (D, TD(0)) with probability 1− e, and to
(D̄, TD̄(0)) with probability e, where D̄ = 1 − D (i.e., the
flipped state of D). The penalty under state (D, e) and action
u is given as uc+ (1− u)e.

Let Vβ,c(D, e) denote the minimum expected total penalty
given initial state (D, e) for the problem with discount factor
β and communication cost c. Let Vβ,c(D, e;u) denote the
expected total penalty obtained by one-time deviation, i.e., by
taking action u at this state and then following the optimal
policy. Then, we can write the Bellman optimality equations
as

Vβ,c(D, e) = min{Vβ,c(D, e;u=0), Vβ,c(D, e;u=1)},
Vβ,c(D, e;u=0) = e+βVβ,c(D, TD(e)),

Vβ,c(0, e;u=1) = c+β[eVβ,c(1, p10) +(1−e)Vβ,c(0, p01)] ,

Vβ,c(1, e;u=1) = c+β[eVβ,c(0, p01) +(1−e)Vβ,c(1, p10)] .
(6)

It is known that under the discounted total penalty criterion
over infinite time horizon, there always exists a stationary
optimal policy that satisfies the above Bellman equations
(6) [30].

Remark 1: We implicitly assume that once the based station
is updated with a new status information D, it holds and uses
D as an estimate of the source’s status until the next update
occurs. Besides this update-and-hold (UAH) estimator, another
promising estimation of the source’s status is maximum a
posteriori (MAP) [29]. Given (D, e), if e > 0.5, the MAP
estimator uses D̄ as an estimate of the source’s status. Thus,
the Bellman optimality equations for MAP estimator can be
written as (6) using Ṽβ,c(D, e) = I{e ≤ 0.5}Vβ,c(D, e) +

I{e > 0.5}Vβ,c(D̄, 1 − e) instead of Vβ,c(D, e) in 2–4
lines. Throughout the paper, we assume the UAH estimator
if otherwise stated, and remark on how the techniques can be
also applied to the MAP estimator.

Let u∗
c(D, e) denote the optimal action given state (D, e)

with a fixed cost c. It can be written as

u∗
c(D, e) = argmin

u∈{0,1}
Vβ,c(D, e;u). (7)

In order to prove that an optimal policy is of threshold type,
we first show that the value function Vβ,c(D, e) is concave in
e (Lemma 1), and that there exists a cost range such that a
deterministic decision is an optimal action outside of the range
(Lemma 2).

Lemma 1: For fixed c, the value function Vβ,c(D, e) is
concave in e.

Proof 1: For notational convenience, we drop β, c in Vβ,c,
and let Vn(D, e) denote the value function at nth iteration
under value iterations starting at (D, e). We have

V0(D, e) = 0 for all D ∈ {0, 1}, e ∈ [0, 1],

V1(D, e) = min{c, e},
Vn+1(0, e) = min{c+ β[eVn(1, p10) + (1− e)Vn(0, p01)],

e+ βVn(0, T0(e))}, (8)
Vn+1(1, e) = min{c+ β[eVn(0, p01) + (1− e)Vn(1, p10)],

e+ βVn(1, T1(e))}.

Clearly, V1(0, e) and V1(1, e) are concave in e. We now show
the concavity of Vn(0, e) and Vn(1, e) by induction. Suppose
that Vn(0, e) and Vn(1, e) are concave in e. Then, the first term
in (8) is linear in e, and the second term is concave2 in e since
Vn(0, T0(e)) = Vn(0, ep11 + (1 − e)p01). Thus, Vn+1(0, e),
the minimum of two concave functions, is also concave in
e. Similarly, we can obtain the same result for Vn+1(1, e).
From the convergence theorem of value iterations [30], we
have Vn(D, e) → V (D, e) as n → ∞, and thus V (D, e) is
concave in e for fixed c. This completes the proof.

Remark 2 (MAP): Under the MAP estimator, the second
term of (8) will be replaced with e + βṼn(0, T0(e)), where
Ṽn(0, T0(e)) = I{T0(e) ≤ 0.5}Vn(0, T0(e)) + I{T0(e) >
0.5}Vn(1, 1 − T0(e)). Since both Vn(0, T0(e)) and Vn(1, 1 −
T0(e)) are concave, their non-negative weighted sum of con-
cave functions is also concave. Thus, Lemma 1 holds for the
MAP estimator.

We now consider a range [cL, cH ], beyond which an optimal
policy is deterministic. Specifically, when c < cL, the optimal
policy has active action for all (D, e), and when c ≥ cH , it
has passive action for all (D, e). In the following lemma, we
show such cL and cH exist.

Lemma 2: For the single source network problem with
communication cost c, there exists an optimal policy that
makes the deterministic decision beyond range [cL, cH ] with

cL = 0,

cH = max{ 1−β+βp01−βp10

(1−β)(1−βp11+βp01)
, 1−β+βp10−βp01

(1−β)(1−βp00+βp10)
}. (9)

2If f(x) is concave in x, then f(ax+ b) is concave in x for a ̸= 0.
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Proof 2: Note that when c is very small, an optimal policy
has u = 1 for all (D, e) ∈ {0, 1} × [0, 1], and when c is
very large, an optimal policy has u = 0 for all (D, e). Under
this assumption, we solve Bellman equations (6) to obtain cL
and cH , and then show that the result satisfies the Bellman
optimality equations.
Case 1) When c is very small, updating is an optimal decision,
and we will have

Vβ,c(D, e;u = 1) < Vβ,c(D, e;u = 0) for all (D, e). (10)

This and (6) lead to

Vβ,c(0, p01)

= Vβ,c(0, p01;u = 1)

= c+ β [p01Vβ,c(1, p10) + (1− p01)Vβ,c(0, p01)] , (11)
Vβ,c(1, p10)

= Vβ,c(1, p10;u = 1)

= c+ β [p10Vβ,c(0, p01) + (1− p10)Vβ,c(1, p10)] . (12)

Combining (11) and (12), it can be easily shown that
Vβ,c(0, p01) = Vβ,c(1, p10) = c/(1− β), with which and (6),
we obtain that, for any (D, e) ∈ {0, 1} × [0, 1],

Vβ,c(D, e;u = 1) = c
1−β ,

Vβ,c(D, e;u = 0) = e+ βVβ,c(D, TD(e))

= e+ βVβ,c(D, TD(e);u = 1)

= e+
βc

1− β
.

(13)

To satisfy (10), it is required that c ≤ e for all e ∈ [0, 1].
Thus, we can conclude that for all c < cL = 0, (13) satisfies
the Bellman optimality equations. In addition, in this case, the
optimal action is u = 1.
Case 2) Let T k

D(e) denote the k-step belief error update of
e given D ∈ {0, 1}, i.e., the belief of the base station when
it does not collect the state information from the source for
k consecutive slots. It is known in [35] that the belief error
evolves as

T k
0 (e) = p01−(p11−p01)

k(p01−(1+p01−p11)e)
1+p01−p11

,

T k
1 (e) = p10−(p00−p10)

k(p10−(1+p10−p00)e)
1+p10−p00

.
(14)

When c is very large, from (6) and (14), we can obtain

Vβ,c(D, e;u = 0) ≤ Vβ,c(D, e;u = 1) for all (D, e), (15)
Vβ,c(0, p01) = Vβ,c(0, p01;u = 0)

=
∑∞

t=0 β
tT t

0 (p01) =
p01

(1−β)(1−βp11+βp01)
,(16)

Vβ,c(1, p10) = Vβ,c(1, p10;u = 0)

=
∑∞

t=0 β
tT t

1 (p01) =
p10

(1−β)(1−βp00+βp10)
.(17)

Using (6), (16) and (17), we have that, for any e ∈ [0, 1],

Vβ,c(0, e;u = 1) = β(p10−p01)e+βp01

(1−β)(1−βp11+βp01)
+ c,

Vβ,c(0, e;u = 0) = (1−β)e+βp01

(1−β)(1−βp11+βp01)
,

Vβ,c(1, e;u = 1) = β(p01−p10)e+βp10

(1−β)(1−βp00+βp10)
+ c,

Vβ,c(1, e;u = 0) = (1−β)e+βp10

(1−β)(1−βp00+βp10)
.

(18)

Combining the above equations and (15), we have c ≥
(1−β+βp10−βp01)e
(1−β)(1−βp11+βp01)

, and c ≥ (1−β+βp01−βp10)e
(1−β)(1−βp00+βp10)

. Hence,
for all c ≥ cH , where cH := max{ 1−β+βp10−βp01

(1−β)(1−βp11+βp01)
,

1−β+βp01−βp10

(1−β)(1−βp00+βp10)
}, (18) satisfies the Bellman optimality

equations, and in this case, the optimal action is u = 0.
Remark 3: Cost cL makes the two actions indifferent at

e = 0, and similarly, cost cH provides an indifferent decision
at e = 1.

Remark 4: If p11 ≥ p01, the k-step belief error T k
0 (e)

monotonically increases to π1 for e < π1 with respect to k, and
monotonically decreases to π1 for e > π1. Hence, it converges
to π1 for all e. If p11 < p01, then T 2k

0 (e) monotonically
increases to π1 and T 2k+1

0 (e) monotonically decreases to π1

for e < π1 with respect to k, and vice versa for e > π1. Thus,
it also converges to π1 for all e while it alternates around π1.
The similar results hold for T k

1 (e), which converges to π0 for
all e.

Remark 5 (MAP): Note that, from (3), it can be easily
shown that TD̄(1 − e) = 1 − TD(e). Hence, under the
MAP estimator, the one-step evolution of state (D, e) is
min{(D, TD(e)), (D̄, 1−TD(e))}, where the minimum com-
pares the second value e of the pair (D, e). Given (D̄, 1− e),
the state evolves to min{(D̄, TD̄(1 − e)), (D, 1 − TD̄(1 −
e))} = min{(D̄, 1 − TD(e)), (D, TD(e))}. Thus, k-step evo-
lution of min{(D, e), (D̄, 1 − e)} for the MAP estimator is
min{(D, T k

D(e)), (D̄, 1 − T k
D(e))}. Due to the different k-

step evolution, the upper bound (9) no longer holds for the
MAP estimator. However, we can still show that the upper
bound is finite, cH < ∞, using its k-step error evolution of
min{T k

D(e), 1 − T k
D(e)}, as well as the same lower bound

cL = 0.
Using Lemmas 1 and 2, we show that an optimal policy is

of threshold type.
Theorem 1: There is a threshold policy that solves the

Bellman optimal equations (6). Specifically, given cost c, the
policy has the decision

u∗
c(D, e) =

{
0, if e ≤ e∗D(β, c),

1, if e > e∗D(β, c),

with a real-valued threshold e∗D(β, c).
Proof 3: From Lemma 2, u∗

c(D, e) = 1 for all (D, e) when
c ≤ cL, and u∗

c(D, e) = 0 for all (D, e) when c ≥ cH . Con-
sider the case when cL < c < cH . From Remark 3, we have
Vβ,c(D, 0;u = 0) < Vβ,c(D, 0;u = 1) and Vβ,c(D, 1;u =
0) > Vβ,c(D, 1;u = 1). For fixed cost c, Vβ,c(D, e;u = 1)
is linear in e from (6) and Vβ,c(D, e;u = 0) is concave in e
from Lemma 1, and both of them are continuous in e from
(18). Thus, there exists exactly one point e ∈ [0, 1) such that
Vβ,c(D, e;u = 0) = Vβ,c(D, e;u = 1). Further, for e ∈ [0, e∗],
we have Vβ,c(D, e;u = 0) ≤ Vβ,c(D, e;u = 1), and for
e ∈ (e∗, 1], we have Vβ,c(D, e;u = 0) > Vβ,c(D, e;u = 1).

Remark 6 (MAP): Theorem 1 also holds for the MAP
estimator from Lemma 1 and the existence of range [cL, cH ]
with cL = 0, cH < ∞.
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B. Special Case of Symmetric Source

In this subsection, we focus on symmetric scenarios with
p01 = p10 = p, under which we have T k

0 (e) = T k
1 (e) and

Vβ,c(0, e) = Vβ,c(1, e) for all e, k, and thus we can simplify
the state representation of the Markov chain with only e. We
rewrite (6) by dropping D as

Vβ,c(e) = min{Vβ,c(e;u = 0), Vβ,c(e;u = 1)},
Vβ,c(e;u = 0) = e+ βVβ,c(T (e)),

Vβ,c(e;u = 1) = c+ βVβ,c(p).

(19)

In this case, we can show the existence of stationary optimal
policy for the (undiscounted) long-run average penalty mini-
mization problem. We use the following Dutta’s theorem.

Theorem 2 (Dutta [36]): Let S be the state space and sup-
pose that the dynamic programming problem is value bounded,
i.e., there exist a state z ∈ S, a function M(·) : S → R, and
a constant M ∈ R such that

−∞ < M(s) < Vβ(s)− Vβ(z) < M < ∞ for all s ∈ S.

Then we have the following results.
1) There exists λ ∈ R such that λ = limβ→1(1 − β)Vβ(s)

for all s ∈ S.
2) There exists a stationary optimal policy for the long-run

expected average problem.
3) Let πβ(·) be a stationary optimal policy for the discounted

penalty minimization problem (5). If πβ(·) → π point-
wise as β → 1, then π is a stationary optimal policy for
the long-run average problem (4).

The following lemma shows that Theorem 2 is applicable
to our case.

Lemma 3: The single symmetric source network problem
with communication cost under the discounted total penalty
criterion is value bounded. Specifically, we have

|Vβ,c(e)− Vβ,c(e
′)| ≤ 1

1−β+2βp for all e, e′ ∈ [0, 1].

Proof 4: From Lemma 1 and the proof of Lemma 2, we
have three cases for Vβ,c(e;u = 0) and Vβ,c(e;u = 1)
as shown in Fig. 2. We mark Vβ,c(e) = min{Vβ,c(e;u =
0), Vβ,c(e;u = 1)} as a solid line. When c < cL, we
have |Vβ,c(e) − Vβ,c(e

′)| = 0 for all e, e′ ∈ [0, 1]. When
cL ≤ c < cH , from (6) and (9), we have |Vβ,c(e)−Vβ,c(e

′)| ≤
|Vβ,c(1;u = 1) − Vβ,c(0;u = 0)| = c < cH = 1

1−β+2βp

for all e, e′ ∈ [0, 1]. If c ≥ cH , then |Vβ,c(e) − Vβ,c(e
′)| ≤

|Vβ,c(1;u = 0) − Vβ,c(0;u = 0)| = 1
1−β+2βp for all

e, e′ ∈ [0, 1] from (18).
Remark 7 (MAP): Under the MAP estimator, the value

boundedness can be also shown similarly, since cL = 0 and
cH < ∞.

From Theorem 2 and Lemma 3, there exists a stationary
optimal policy that minimizes the long-term expected average
penalty for a symmetric Markovian source. Further, if we
can obtain the closed-form expressions of value functions
Vβ,c(p) and threshold e∗(β, c), we may directly obtain the
solution to the expected average penalty problem. Since it is
difficulty to obtain the closed-form e∗(β, c), we show that an
optimal policy is of threshold type by using the existence of an
optimal policy of Theorem 2, and then obtain the closed-form

expression of the minimum expected average penalty λ over
infinite horizon.In the following, we study the problem (4) of
the long-term expected average penalty and omit the discount
factor β.

Given the existence of a stationary optimal policy, we have
the following Bellman equations as

λ+ ϕc(e) = min{e+ ϕc(T (e)), c+ ϕc(p)}, (20)

where ϕc(·) denotes the cost-to-go function that is the dif-
ferential penalty occurred by the transient change [30]. It
is not difficult to show that ϕc(·) is concave in e for fixed
c, and ϕc(e) is nondecreasing and concave in c for fixed
e: we construct value iteration for the nth iteration cost-to-
go function ϕn,c(e), and use the techniques in the proof of
Lemma 1 along with convergence ϕn,c(e) → ϕc(e) as n → ∞.
Also, we can obtain

cL = 0, cH = 1
2p ,

which can be obtained by either taking the limit β → 1 in
Lemma 2, or directly solving (20) as in Lemma 2. From the
concavity of ϕc(·) and the existence of boundary costs cL
and cH , it can be shown that an optimal policy that solves
(20) is of threshold type, following the same line of analysis
of Theorem 1. We omit the proof, and using the fact that
an optimal policy is of threshold type. We now obtain the
minimum expected average penalty λ.

Lemma 4: When a source follows a symmetric Markov
process, we have the minimum expected average penalty λ
as

• When p ≤ 1/2, we have

λ =


c, if e∗(c) < p,

1
K̃+1

(c+ hp(p, K̃)), if p ≤ e∗(c) < 1
2 ,

1
2 , if e∗(c) ≥ 1

2 ,

(21)

where K̃ =
⌊
log1−2p

1−2e∗(c)
1−2p

⌋
+1, and hp(x, y) =

y
2 −

(1−2x)(1−(1−2p)y)
4p .

• When p > 1/2, we have

λ =

{
c, if e∗(c) < p,
1
2 , if e∗(c) ≥ p.

(22)

Proof 5: Since λ does not depend on the initial state [30],
we solve (20) with initial belief state p under the stationary
optimal policy of threshold type with threshold e∗(c).

Suppose that p ≤ 1/2. Then T K(p) = (1 − p)T K−1(p) +
(1−T K−1(p))p is a monotonically increasing function of K
converging to 1

2 from Remark 4.
• If e∗(c) < p, the policy will take action u = 1 at e = p.

From (20), we have λ+ ϕc(p) = c+ ϕc(p), i.e., λ = c.
• If e∗(c) ≥ 1/2, the policy will take action u = 0 at

e = T k(p) for all k, since T k(p) < 1
2 . Then we have

λ+ϕc(p) = p+ϕc(T (p)) and thus, ϕc(T (p))−ϕc(p) =
λ − p. Similarly, we have ϕc(T k(p)) − ϕc(T k−1(p)) =
λ−T k−1(p) for all k. Letting ϕc(p) = 0, we can obtain

ϕc(T K(p)) = Kλ−
∑K−1

k=0 T k(p)

= Kλ− K
2 + (1−2p)(1−(1−2p)K)

4p ,
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(a) (b) (c)

Fig. 2. Value function Vβ,c(e;u = 0) and Vβ,c(e;u = 1). Solid lines denote their minimum Vβ,c(e): (a) When c ≤ cL, (b) when cL < c < cH , and (c)
when c ≥ cH .

where the last equation is from (14). By dividing both
sides by K and letting K → ∞, we can obtain λ = 1/2
since ϕc(T K(p)) converges to finite ϕc(

1
2 ).

• If p ≤ e∗(c) < 1/2, then from the monotonicity
of T k(p), there exists an integer K̃ ≥ 0 such that
T K̃(p) ≤ e∗(c) and T K̃+1(p) > e∗(c). From T k(p) =
1−(1−2p)k+1

2 and the integer constraint, we have K̃ =⌊
log1−2p

1−2e∗(c)
1−2p

⌋
+ 1. In this case, we can obtain

ϕc(T K̃+1(p)) = K̃λ− K̃
2 + (1−2p)(1−(1−2p)K̃)

4p . (23)

Since T K̃+1(p) > e∗(c) implies λ + ϕc(T K̃+1(p)) =
c + ϕc(p), we combine it with (23). Letting ϕc(p) = 0,
we obtain (21).

Now suppose that p > 1/2. Then, T k(p) converges to 1
2 as

k → ∞ while it alternates around 1/2 from Remark 4. We
note that T k(p) < p for all k. Thus, if e∗(c) < p, the optimal
policy will take action u = 1 at e = p and we have λ = c. If
e∗(c) ≥ p, the policy will take action u = 0 at e = T k(p) for
all k, and we have λ = 1/2 as in the case that p ≤ 1/2 and
e∗(c) ≥ 1/2.

Remark 8 (MAP): Suppose that p01 = p10 = 1 − p. Then,
for the MAP estimator, the one-step evolution of the belief
error e is min{ep+(1− e)(1−p), 1− ep− (1− e)(1−p)} =
min{1− e(1− p)− (1− e)p, e(1− p) + (1− e)p}, which is
the same as the one-step evolution of e for the Markov chain
with p01 = p10 = p. By induction, it can be shown that k-step
evolution of the belief error e for the transition probability p
is the same as k-step evolution of e for 1− p.

Remark 9 (MAP): Note that, for the MAP estimator, the
error range is [0, 0.5] since if (D, e), e > 0.5 then the MAP
estimator uses (D̄, 1 − e). Thus, when p ≤ 1

2 , the minimum
expected average penalty λMAP for the MAP estimator is the
same as the first and second cases in (21) since T k(e) =
min{T k(e), 1− T k(e)} for all k ≥ 0 and e ∈ [0, 0.5]. When
p > 1/2, from Remark 8, we have λMAP as in (21) using
q = 1− p instead of p.

IV. INDEX POLICY FOR MULTIPLE SYMMETRIC SOURCES

In this section, we show that the problem of single symmet-
ric source with communication cost is indexable, and obtain
the closed-form index, which can be considered as the amount

of communication cost that the base station is willing to
pay for the information update. For multiple sources, we can
minimize the information mismatch by updating the source
with the highest index first.

We start from the definition of indexability. Let P(c) be the
set of belief state e for which it is optimal to not update the
state information, i.e., P(c) = {e ∈ [0, 1] : u∗

c(e) = 0}.
Definition 1 (Indexibility [21]): The problem of single

source with communication cost is indexable if P(c) mono-
tonically increases from ∅ to the entire space [0, 1] as the
communication cost c increases from −∞ to ∞. The extended
problem to multiple sources is indexable if each problem of
source i is indexable for all sources i.

In our problem of single symmetric source, the indexability
is equivalent to the monotonic increase of threshold e∗(c)
for c ∈ (cL, cH ]. The following lemma shows a sufficient
condition for the indexability of our single-source problem.

Lemma 5: Threshold e∗(c) monotonically increases with
respect to c ∈ (cL, cH ] if

∂ϕc(e;u = 1)

∂c

∣∣∣
e=e∗(c)

>
∂ϕc(e;u = 0)

∂c

∣∣∣
e=e∗(c)

, (24)

where ϕc(e;u = 0) = e + ϕc(T (e)) and ϕc(e;u = 1) =
c+ ϕc(p).

Proof 6: We prove by contraposition. Suppose that there
exists a c̃ ∈ (cL, cH ] such that e∗(c) is decreasing at c =
c̃. Then, there exists a δ > 0 such that for all ϵ ∈ [0, δ],
e∗(c̃+ ϵ) ≤ e∗(c̃). Thus, given cost c̃+ ϵ, the optimal decision
at e∗(c̃) is u = 1, i.e.,

ϕc̃+ϵ(e
∗(c̃);u = 1) ≤ ϕc̃+ϵ(e

∗(c̃);u = 0). (25)

Similarly, we have

ϕc̃(e
∗(c̃);u = 1) = ϕc̃(e

∗(c̃);u = 0). (26)

Combining (25) and (26), and dividing by ϵ, we have
ϕc̃+ϵ(e

∗(c̃);u=1)−ϕc̃(e
∗(c̃);u=1)

ϵ ≤ ϕc̃+ϵ(e
∗(c̃);u=0)−ϕc̃(e

∗(c̃);u=0)
ϵ ,

which implies ∂ϕc(e;u=1)
∂c

∣∣
e=e∗(c̃)

≤ ∂ϕc(e;u=0)
∂c

∣∣
e=e∗(c̃)

. By
contraposition, the lemma holds.

We now show the indexability of the single source network
with communication cost using Lemma 5.

Theorem 3: For a source that follows a two-state symmetric
Markov process, the single source problem with communica-
tion cost is indexable.
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Proof 7: To show that P(c) monotonically increases in c, it
suffices to show (24) for all c ∈ (cL, cH ]. From (20), we have

∂ϕc(e;u=1)
∂c

∣∣
e=e∗(c)

= 1 + ∂ϕc(p)
∂c , (27)

∂ϕc(e;u=0)
∂c

∣∣
e=e∗(c)

= ∂ϕc(T (e∗(c)))
∂c . (28)

We are going to use a couple of intermediate results: (i) If
e > e∗(c), then the optimal policy has action u = 1, and we
have λ + ϕc(e) = c + ϕc(p) from (20). By taking the partial
derivative with respect to c, we have

∂ϕc(e)
∂c = 1 + ∂ϕc(p)

∂c − ∂λ
∂c . (29)

(ii) If T k(e) ≤ e∗(c) for all k ≥ 0, the optimal action is u = 0
at T k(e). Then, again from (20), we have λ+ϕc(T k−1(e)) =
T k−1(e) + ϕc(T k(e)) for all k. Letting

hp(x, y) =
y
2 − (1−2x)(1−(1−2p)y)

4p ,

we can obtain

ϕc(e) =
∑K−1

k=0 T k(e)−Kλ+ ϕc(T K(e))

= K
2 − (1−2e)(1−(1−2p)K)

4p −Kλ+ ϕc(T K(e)).

= hp(e,K)−Kλ+ ϕc(T K(e)).

Note that ϕc(T K(e)) → ϕc(1/2) as K → ∞. Dividing the
equation by K and letting K → ∞, we obtain λ = 1/2 (i.e.,
λ does not depend on c), and using this, we obtain ϕc(e) =
ϕc(1/2)− (1− 2e)/4p when K → ∞. This results in

∂ϕc(e)
∂c =

∂ϕc(
1
2 )

∂c . (30)

We now show (24) using (27) – (30). Suppose that p ≤ 1/2.
• If e∗(c) < p, then we have T (e∗(c)) > e∗(c) from Re-

mark 4, and λ = c from Lemma 4. Hence, from (29) with
e = T (e∗(c)) > e∗(c), we have ∂ϕc(T (e∗(c)))

∂c = ∂ϕc(p)
∂c .

From this and (27), (28), we have

∂ϕc(e;u=1)
∂c

∣∣
e=e∗(c)

= 1 +
∂ϕc(p)

∂c

>
∂ϕc(p)

∂c
=

∂ϕc(e;u = 0)

∂c

∣∣
e=e∗(c)

.

(31)

• If p ≤ e∗(c) < 1/2, then we have T (e∗(c)) > e∗(c) and
λ = 1

K̃+1

[
c+ hp(p, K̃)

]
. Thus, from (29), we have

∂ϕc(e;u=1)
∂c

∣∣
e=e∗(c)

= 1 + ∂ϕc(p)
∂c

> 1 + ∂ϕc(p)
∂c − 1

K̃+1
= ∂ϕc(e;u=0)

∂c

∣∣
e=e∗(c)

,

where K̃ =
⌊
log1−2p

1−2e∗(c)
1−2p

⌋
+ 1 > 0.

• If e∗(c) ≥ 1/2, then we have T k(e∗(c)) ≤ e∗(c) and
T k(p) ≤ e∗(c) for all k from Remark 4. Thus, we have
∂ϕc(T (e∗(c)))

∂c =
∂ϕc(

1
2 )

∂c and ∂ϕc(p)
∂c =

∂ϕc(
1
2 )

∂c from (30),
and

∂ϕc(e;u=1)
∂c

∣∣
e=e∗(c)

= 1 +
∂ϕc(p)

∂c

>
∂ϕc(p)

∂c
=

∂ϕc(e;u = 0)

∂c

∣∣
e=e∗(c)

.

(32)

Now suppose that p > 1/2.
• If e∗(c) < 1/2, then we have T (e∗(c)) > 1/2 since

T (·) alternates around 1/2, and λ = c from Lemma 4.
Hence, we have ∂ϕc(T (e∗(c)))

∂c = ∂ϕc(p)
∂c from (29), and

the sufficient condition holds as in (31).
• If e∗(c) ≥ p, then we have e∗(c) ≥ T k(e∗(c)) and

e∗(c) ≥ T k(p) for all k from Remark 4. Thus, (30) holds
for all e, we have ∂ϕc(T (e∗(c)))

∂c = ∂ϕc(p)
∂c =

∂ϕc(
1
2 )

∂c which
satisfies the sufficient condition as in (32).

• If 1/2 ≤ e∗(c) < p, then the optimal action is u = 1 at
e = p, and u = 0 at e = 1/2. Thus, we have

λ+ ϕc(p) = c+ ϕc(p), and λ+ ϕc(
1
2 ) =

1
2 + ϕc(

1
2 ).

Solving the above equations, we have λ = c = 1/2,
which implies that if c = 1/2, then u = 1 for every time
slot and u = 0 for every time slot are optimal solutions
and give the time-average penalty of 1/2. Further, it im-
plies that if c ̸= 1/2, then the case of (1/2 ≤ e∗(c) < p)
does not occur.
Hence, we have λ+ϕc(1/2) = c+ϕc(p). By taking partial
derivative with respect to c, we obtain ∂ϕc(p)

∂c =
∂ϕc(

1
2 )

∂c .
Further, since T k(e∗(c)) ≤ e∗(c) for all k, we have
∂ϕc(T (e∗(c)))

∂c =
∂ϕc(

1
2 )

∂c from (30). Thus, the sufficient
condition is satisfied as in (32).

Given the indexability of the problem, we compute the index
as follows.

Definition 2 (Whittle’s index [21]): Given indexability,
Whittle’s index denoted by W (e) is the infimum transmission
cost c that makes both actions (i.e., u = 0, 1) equally desirable
at e.

Theorem 4: Consider the error probability minimization
problem with multiple symmetric Markovian sources. The
closed-form expression of Whittle’s index Wi(ei) for source
i is given as follows.

• When p(i) ≤ 1/2:

Wi(ei)=


ei, if ei<p(i),

(K̃ + 1)ei − hp(i)(p(i), K̃), if p(i)≤ ei <
1
2 ,

ei
2p(i) , if ei≥ 1

2 ,
(33)

where K̃ =
⌊
log1−2p(i)

1−2ei
1−2p(i)

⌋
+ 1.

• When p(i) > 1/2:

Wi(ei) =


ei, if ei < 1

2 ,
1
2 , if 1

2 ≤ ei < p(i),
ei

2p(i) , if ei ≥ p(i).

(34)

Proof 8: We drop i for notational convenience. From the
definition of Whittle index, for given e, we find cost W (e)
such that the two actions (u = 0 and 1) are indifferent under
the threshold policy π. Let π(e, c) denote the decision of
policy π with cost c: π(e′,W (e)) = 0 for all e′ ≤ e, and
π(e′,W (e)) = 1 for all e′ > e by definition. First, suppose
that p ≤ 1

2 .
• For e ∈ [0, p), we have e < T (e) since T (·)

monotonically increases toward 1/2. Thus, we have
π(T (e),W (e)) = 1, which leads to λ + ϕc(T (e)) =
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c+ ϕc(p) from (20) with c = W (e). Similarly, we have
π(p,W (e)) = 1 and λ+ ϕc(p) = c+ ϕc(p). Also, since
the policy is indifferent at e, we have e + ϕc(T (e)) =
c+ϕc(p). By solving, the three equations, we can obtain
that c = W (e) = e.

• For e ∈ [p, 1/2), we have e < T (e) < 1/2, and thus
π(T (e),W (e)) = 1, which leads to λ + ϕc(T (e)) =
c+ϕc(p) from (20) with c = W (e). By letting ϕc(p) = 0
with c = W (e), we have λ + ϕc(T (e)) = c. Also
from (21), we have λ = 1

K̃+1

[
c+ hp(p, K̃)

]
, where

K̃ =
⌊
log1−2p

1−2e
1−2p

⌋
+1. The indifference of the policy

at e results in e + ϕc(T (e)) = c. Combining with
λ+ ϕc(T (e)) = c, we have e = λ and thus (33).

• For e ≥ 1/2, we have 1/2 ≤ T (e) ≤ e since T (·)
monotonically decreases towards 1/2 from Remark 4, and
thus π(T (e),W (e)) = 0, which leads to λ+ϕc(T (e)) =
T (e) + ϕc(T 2(e)) with c = W (e). Also, from p ≤ 1/2
and T (p) ≤ 1/2 < W (e), we have π(T (p),W (e)) = 0,
implying λ + ϕc(p) = p + ϕc(T (p)). Combining these
with the indifference equation e+ϕc(T (e)) = c+ϕc(p),
we obtain

e+ T (e) + ϕc(T 2(e)) = c+ p+ ϕc(T (p)). (35)

We note that T k(e) ≤ e and T k(p) ≤ e for all k ≥ 0,
p ≤ 1/2, e ≥ 1/2. Then, from π(T k(e),W (e)) = 0 and
π(T k(p),W (e)) = 0, we can obtain

ϕc(T k+1(e))− ϕc(T k(e)) = λ− T k(e), (36)

ϕc(T k+1(p))− ϕc(T k(p)) = λ− T k(p), (37)

respectively. Further, from (36) and (37), we can obtain

ϕc(T K+1(e)) +
∑K

k=2 T k(e) = ϕ(T 2(e)) + (K − 1)λ,

ϕc(T K(p)) +
∑K−1

k=1 T k(p) = ϕc(T (p)) + (K − 1)λ,

respectively. By adding e+ T (e) to the both sides of the
first equation and c + p to the both sides of the second
equation, and by combining them with (35), we obtain
K∑

k=0

T k(e)+ϕc(T K+1(e)) = c+

K−1∑
k=0

T k(p)+ϕc(T K(p)),

where ∑K
k=0 T k(e) = hp(e,K + 1), (38)∑K−1
k=0 T k(p) = hp(p,K).

By letting K → ∞, we have ϕc(T K+1(e′)) → ϕc(
1
2 ) for

any e′. From p ∈ [0, 1], we can obtain c = W (e) = e/2p.
Now we consider the other case of p > 1/2.
• For e ∈ [0, 1/2) and e ∈ [p, 1], we can follow the same

line of the analysis as the case p ≤ 1/2 to obtain (34).
• For e ∈ [1/2, p), we have π(p,W (e)) = 1, which leads

to λ + ϕc(p) = c + ϕc(p), i.e., λ = c, from (20). Also
since T (e) < e, we have π(T (e),W (e)) = 0, and thus
λ + ϕc(e) = e + ϕc(T (e)). Letting ϕc(e) = 0, and
combining two equations, we have ϕc(T (e)) = c − e.
We generalize this by using T k(e) < e for all k.
From π(T k(e),W (e)) = 0, we have λ + ϕc(T k(e)) =

T k(e) + ϕc(T k+1(e)) for all k with c = W (e). Then
using λ = c and from (38),

ϕc(T k(e)) = c− T K−1(e) + ϕc(T K−1(e))

= Kc−
K−1∑
k=0

T k(e)

= Kc− K

2
+

(1− 2e)(1− (1− 2p)K)

4p
.

From ϕc(T K(e)) → ϕc(1/2) as K → ∞, we can obtain
c = 1/2 by dividing both sides by K and letting K → ∞.

Therefore, we can assign an index to each symmetric
source i as in (33) or (34), depending on the value of p. Since
a source with a higher index implies that the threshold policy
is willing to take a higher communication cost for an update
than the other sources, we can develop an index policy that
updates the source with the highest index to minimize the
long-run average error sum over all the sources.

Remark 10 (MAP): From Remarks 8 and 9, the indexiablity
for the MAP estimator can be shown. Further, for p ≤ 0.5, the
Whittle’s index for the MAP estimator is the same as the first
and second cases in (33). For p > 0.5, the Whittle’s index is
the same as (33) by replacing q = 1− p instead of p.

V. SIMULATION RESULTS

In this section, we show the performance of Whittle’s
index policy through simulation results. We first compare five
policies: dynamic programming (DP) over finite time horizon
(for UAH and MAP estimators), Whittle’s index policy (for
UAH and MAP estimators), and myopic policy. Recall that the
myopic policy updates source i = argmaxi ei(t) at each time
t. Although the DP is an optimal policy, its high computational
complexity prohibits its practical implementation [30]. Thus,
in this simulation, we consider two symmetric sources over
1000 time-slots. In particular, the transition probability p(1) of
source 1 is fixed at 0.1 or 0.5 while the transition probability
p(2) of source 2 varies from 0.1 to 0.9. We recall that the
communication channel is a noiseless channel and has no
transmission delay.

Fig. 3 shows the average error of five policies with two
symmetric sources when p(1) = 0.1 (Fig. 3((a))) or p(1) = 0.5
(Fig. 3((b))) while p(2) = α varying from 0.1 to 0.9. The
results are averaged over 104 repetitions. As seen in Fig. 3,
the Whittle’s index policy achieves near-optimal performance.
Further, since the evolution of estimated error under MAP
estimator for Markov chains with transition probabilities of
p and 1 − p is the same, the performance of MAP estimator
is symmetric around α = 0.5. As seen in Fig. 3((a)), when
p(2) = α ≥ 0.5, the belief error of source 1 is no larger than
0.5. Thus, the myopic policy always choose source 2, and the
average error (per source) becomes 0.25. The same holds for
α ≤ 0.5 in Fig. 3((b)). We observed that the performance
gap between the Whittle’s index policies and the dynamic
programming is insignificant, which confirms to the previous
results of the optimality of the Whittle’s index policy with
many sources/arms [10]. Thus, we conjecture that the Whittle’s
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Fig. 3. Average error performance with two sources: (a) p(1) = 0.1 and
p(2) = α and (b) p(1) = 0.5 and p(2) = α.

index policy proposed in this paper performs very close to the
optimal policy (DP).

Next, we compare the performance of Whittle’s index policy
and the myopic policy with a larger number of symmetric
sources. The number of sources changes from 1 to 10, and
the transition probabilities p(i) ∈ (0, 1) are chosen uniformly
at random. The total time-slot is 105 and the result is averaged
over 100 repetitions. As seen in Fig. 4, Whittle’s index policy
outperforms the myopic policy for all the cases.

VI. CONCLUSION

In this paper, we considered a status update system with
multiple sources updating a common remote estimation and
investigated the centralized scheduling policies to minimize
the expected average estimation error over infinite time hori-
zon. We showed that an optimal solution to the problem of
single source with communication cost is of threshold type.
For multi-source scenario, we modeled the error minimiza-
tion problem as a restless multi-armed bandits problem and
showed that our problem with symmetric sources is indexable.
Under indexability, we developed low-complexity algorithm
by obtaining a closed-form expression of the Whittle’s index.
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Fig. 4. Average error performance with multiple sources.

Through numerical simulations, we showed that our algorithm
is near-optimal by comparing finite-time dynamic program-
ming.
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[16] X. Gao, E. Akyol, and T. Başar, “Optimal sensor scheduling and remote
estimation over an additive noise channel,” in Proc. IEEE ACC, 2015.



498 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 6, DECEMBER 2021
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