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Dynamic Power Optimization of Pilot and Data for
Downlink OFDMA Systems

Yong Liu, Fei Liu, Guang Zhu, Xiaolei Wang, and Yuechao Jiao

Abstract: In this paper, we investigate the power allocation prob-
lem in downlink orthogonal frequency-division multiple access
(OFDMA) networks. Different from previous researches on power
allocation, we take into account various practical factors, such as
the stochastic traffic arrival, the time-varying channel, the queue
stability requirements of all users, the channel estimation cost and
the corresponding effect of imperfect channel state information
(CSI) on data transmission rate. The power allocation problem
is formulated as maximizing the time-averaged data transmission
rate by optimizing pilot and data power allocation subject to the
queue stability and the maximum transmit power constraints. The
data transmission rate is defined in terms of the pilot transmit
power, the data transmit power and the channel estimation er-
ror, which is non-concave. To solve the non-concave and stochas-
tic optimization problem, a dynamic pilot and data power alloca-
tion (DPDPA) algorithm is proposed with the aids of approximate
transformation, Lyapunov optimization and Lagrange dual formu-
lation. Moreover, we derive the bounds of performances, in terms
of the time-averaged data transmission rate and queue length.

Index Terms: Channel estimation, dynamic power control, imper-
fect CSI, queue stability

I. Introduction

The tremendous growth of applications, such as entertain-
ment, online shopping, video conferencing and social media,
lends to strong demands for high-data rate and low latency ser-
vices in future wireless mobile communication [1]. Due to its
ability of supporting high data rate, the orthogonal frequency-
division multiple access (OFDMA) has been adopted as the ma-
jor access scheme for the next generation. Meanwhile, appropri-
ate algorithm design for resource allocation can further improve
the data transmission rate, while reducing delay for data trans-
mission by efficiently used the limited wireless resource. At
present, there exist extensive researches to maximize the overall
throughput of OFDMA-based systems by devising appropriate
resource allocation policies [2]-[6]. However, these works are
based a common assumption of perfect channel state informa-
tion (CSI), which is impossible obtained in practice. In practice
wireless communication systems, pilot symbols are usually in-
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serted into data stream to facilitate channel estimation. The es-
timation accuracy increases with the resource cost used to send
pilot symbols such as power, subcarrier, and time. While exces-
sive estimation cost necessarily leads to the reduction of com-
munication resource for data transmission, further degrading the
data transmission rate. Hence, the resource allocation problem
should take into account the resource balance between pilot and
data.

In addition, data traffic arrives randomly in wireless radio ac-
cess network, and is stored in a separate queue corresponding
to each user device in base station before transmission. The
wireless radio access network is in charge of transmitting these
stored data to user devices through wireless channel. The wire-
less channel is usually fluctuant in practice wireless networks
due to various factors such as path loss and user mobility. To in-
crease system throughput, the operator allocates resource to the
users with good channel conditions. Thus, the event of queue
length (i.e. delay) increase will occur, if the channel condition
degrades to the event that the instantaneous transmission rate
from BS is smaller than (or cannot support) data arrival rate.
However, in practice application, queue length is one of the
most important metrics for user perceived application perfor-
mance. The longer queue lends to poor user perceived applica-
tion performance, and users even quit the application or service.
Thus, in practical wireless systems, the resource allocation al-
gorithm should be designed with considering not only CSI, but
also queue state information.

In recent years, many investigations on resource allocation
have been performed with practical factors. The optimal power
allocation and subcarrier assignment between pilot and data
were proposed to maximize the system capacity in [7] and [8],
respectively. In [9], the authors investigated the power optimiza-
tion problem to maximize the system EE with considering the
CSI estimation cost for downlink OFDMA multi-user systems.
In [10], the joint power and subcarrier allocation problem be-
tween pilot and data was studied to maximize each user’s EE in
multi-user OFDMA wireless networks. Note that the works [7]—
[10] assume infinite backlog at the transmitter and the stationary
channel conditions, while disregarding the time-varying channel
conditions, the stochastic data arrivals, and the associated queue
stability demands of all user devices. For matching time-varying
channel conditions, stochastic data arrivals, and queue stability
requirements of all user devices, many resource allocation po-
lices have been designed with various optimization objectives,
i.e., power consumption minimization [11], rate maximization
[12], and energy efficiency maximization [13]. However, the
authors in [11]-[13] devised dynamic resource allocation poli-
cies relying on the assumption of perfect CSI, which doesn’t oc-
cur in reality. Comparatively, the paper [14] proposed a policy
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to simultaneously perform optimal subband assignment and the
rate allocation under imperfect feedback CSI and queue stability
constraints of each user. With taking into account channel esti-
mation error and queue stability constraints, the dynamic power
and subcarrier allocation problem was investigated in [15]. Al-
though [14], [15] took into account both imperfect CSI and
queue stability demands, they fixed pilot resource without con-
sidering resource couple between pilot and data. To the best of
our knowledge, the existing researches in resource allocation,
based on one or more constraints: Time-varying channel, imper-
fect CSI, resource tradeoff between pilot and data, and queue
stability, do not jointly consider these practical factors.

In this paper, we investigate the power allocation in down-
link OFDMA networks with respect to the channel estimation
cost and the corresponding effect of imperfect CSI on data trans-
mission rate as well as the time-varying channel and the queue
stability constraints. The data transmission rate is defined as a
function of the pilot transmit power, the data transmit power
and the channel estimation error. We formulate the problem
as a stochastic optimization model for maximizing the time-
averaged data transmission rate under the queue stability and
the maximum transmit power constraints. This problem is ex-
tremely challengeable due to the inherently non-concave defini-
tion of data transmission rate. To tackle the tough non-concave
and stochastic optimization model, we propose a dynamic power
allocation algorithm (DPDPA), by exploiting approximate trans-
formation, Lyapunov optimization technique and Lagrange dual
formulation. By theoretical analysis, the bounds of perfor-
mances in terms of the time-averaged data transmission rate and
queue length are determined.

The rest of the paper is organized as follows. In Section II, we
describe the system scenario, introduce the definition of queue
stability, and formulate the resource optimization problem with
imperfect CSI. The DPDPA is devised to solve this optimization
problem in Section III, and its performance is analyzed in Sec-
tion IV. Section V presents and comments simulation results.
Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

A. Description of the System Scenario

Consider a downlink OFDMA system consisting of one
BS and user set M = {1,2,---,M}. Denote g;(1) =
[90,:(7),91.:(7), -+, 914(T), - -+, gL, .:(T)] as the channel vector
between the BS and user ¢, where g; ;(7) is the channel impulse
response of the [th path at time-slot 7 and L; + 1 is the number
of discrete paths. For simplicity, we assume that g; ;(7) is Gaus-
sian random variable with zero mean and variance 1/(L; + 1),
and stays constant in each slot and changes independently from
one time-slot to another. To obtain the CSI of all users, the BS
transmits pilot symbols, from which each user estimates its own
CSI by utilizing the minimum-mean squared-error (MMSE) es-
timator and feeds it back to BS. Pilot symbols are periodically
placed in the frequency domain (shown in Fig. 1) and shared
by different users for channel estimation. Let x;;(7) denote the
transmit signal of user ¢ on subcarrier j at time-slot 7, which sat-
isfies E[|z;;(7)|?] = 1, then the corresponding received signal
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Fig. 1. System model.
is expressed as
Yij (7) = Gij (1)) Pij (T)ai; (7)+Gij (1)) Pij (T)2i5 (1) 4145 (7),

ey
where G;(7) is channel gain, G;(7) and Gy;() represent
the estimation and the estimation error of G;;(7), P;;(7) is
data transmit power, and n;;(7) is zero mean Gaussian noise
with variance E[|n;;(7)[?] = Np. According to MMSE esti-

mator, G;(7) and Gy;(7) are uncorrelated mean-zero Gaus-

sian random vectors with variances 0% (1) = 1%(7) and
Gi]‘ +’Yt(7-)

2 _ 1 ; _ _P(r)

TE. (1) = e respectively, where v;(7) = TinN, 18

the signal-to-noise ratio (SNR) for pilot transmission, and P;(7)
is the pilot power which uniformly spreads in frequency domain.
The data transmission rate in terms of estimation error is given
by [16]:

P, i 2
Rij(r) = Bolog, <1 + J(JT()TU) J(42|N0>
z é”
— B 1 1 (T)Ué” |VZJ( )|2 2
= DBolog, Py(r)o?, o TN ;@

where v;;(7) is a Gaussian random variable with zero mean and
unit variance. The second equality is true due to the fact that an
arbitrary random variable, which follows a Gaussian distribution
with zero-mean, can be expressed as the product of its standard
deviation and a standard Gaussian random variable.

B. Definitions of Stability

A separate queue corresponding to each user is maintained at
BS, which temporarily stores the arrived data before transmis-
sion, as shown in Fig. 1. We use the vector A(7) = [A;(7);i €
M] denoting the arrival process of queue, where A;(7) is the
amount of new data that enters the queue of user ¢ during time-
slot 7. Assume that A(7) is independently and identically dis-
tributed (i.i.d.) over time-slots with mean A = [\;;i € M]. If
user ¢ occupies data subcarrier set §2; for transmission, the data
transmission rate .S;(7) from queue ¢ to its corresponding user

is expressed as
)= Y Ri(7). (3)
JEQ;

Let Q(7) = [Q;i(7); ¢ € M] be the current queue length, where
Q;(7) represents the number of data stored in queue ¢ during
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time-slot 7. Based on the arrival rate A;(7) and the departure
rate S;(7), the dynamic of queue length Q);(7) can be modeled
as

Qi(t 4+ 1) = max[Q;(7) — Si(7),0] + A;(7). @)
If the queue length satisfies
tim 2 )

it is mean rate stable [19]. That is, the mean rate stability of
the queue is guaranteed if its length is finite. In the following
discussion, we will use the term “stable" to refer to the mean
rate stable.

C. Problem Formulation

Our objective is to maximize the long-term data transmission
rate of the system by optimizing pilot and data transmit power
subject to the queue stability and the total transmit power con-
straints. We define the long-term data transmission rate of the
system R, as

1 T—1 M
Riot = Th—{%o T TZ:O E lzl Si(T)‘| .

The overall transmit power Py, (7) during time-slot 7 consists
of two parts: data power and pilot power. Mathematically,

M+ 3 R)

i=1jeQ;

(6)

Pyot (1) @)

Then the resource optimization problem is formulated as the fol-
lowing stochastic optimization model.

T—1
PL, s i 7Y 25 ] ®
s.t.  Queues {Q;(7)} are stable, Vi, 9)
Ptot(T) S Pmaza VT; (10)
Pij(t) >0, Vi, j,, (11)
Pt(T) Z Oa VT, (12)

Queue stability constraint (9) guarantees all arrived data leaving
the queues in a finite time. Constraint (10) limits the maximum
transmit power at BS. Constraints (11) and (12) ensure that the
instantaneous powers for pilot and data are nonnegative.

Note that the objective function is non-concave with respect
to P,(7) and P;;(7) (the proof as shown in Appendix A).
Hence, P1 is the non-convex and stochastic optimization prob-
lem, which generally has no feasible solution due to its NP-
hardness. Additionally, the high level of correlation among the
time-averaged constraint (i.e., (9) and the instantaneous con-
straints (i.e., (10)—(12)) further increases the complexity of the
problem. However, in the next section, we shall develop an ef-
fective data and pilot power allocation algorithm to solve above-
mentioned difficulties in problem P1.
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III. DYNAMIC JOINT RESOURCE ALLOCATION

In this section, we solve problem P1 by three steps. Firstly,
an approximate transformation is implemented for problem P1.
Next, using the Lyapunov optimization technology, the approx-
imate transformed problem is converted into a series of instan-
taneous optimization problems. Finally, an effective pilot and
data power allocation algorithm is proposed to solve these in-
stantaneous optimization problems based on the Lagrange dual
formulation.

A. Approximate Transformation

Due to the non-concavity of objective function (8), problem
P1 falls into the scope of non-convex stochastic optimization
programming, whose solution is difficult to find. However, it is
clear that the optimal power allocation of problem P1 satisfies
Piot(T) = Ppaz, since the objective function increases with
data power P;;(7) and pilot power P;(7). In realistic cellular
system, the maximum transmit power of BS should guarantee
that all users in the system can receive the pilots with high SNR
(P; > (L; +1)Np) [9], [17]. Then, problem P1 can be approx-
imately converted into

P2: Pt(’l];,l)’l,ap};(‘r)RtOt = hm — Z E ZX:S ] (13)
s.t. (9), (10), (11), (12),
where
7)= > Ri(r)
JEQ;
_ Py (1) Py (1) |vij (7) P
-2 s i+ Py (1) + )

(14)

In Appendix C, we prove that R; ;(7) is a jointly concave func-
tion of P;(7) and P,;(7). Hereto, by approximate transforma-
tion, the original problem is converted into a convex stochastic
optimization problem P2.

B. Lyapunov Optimization

In this subsection, the Lyapunov optimization method is em-
ployed to solve problem P2, because it allows us to consider
the joint problem of stabilizing queues and optimizing time-
averaged throughput. By using the Lyapunov optimization tech-
nology, problem P2 is converted into a series of instantaneous
optimization problems. Then, these instantaneous problem are
solved in its corresponding time-slot.

According to Lyapunov method [18]-[20], the transformation
process for problem P2 is detailed in this subsection. To this
end, we first define the Lyapunov function as

| M
=3 Z Qi(7)2
i=1
Then, the conditional Lyapunov drift A(Q(t)) is given by
A(Q(7)) = E{L(Q(r + 1)) = L(Q(7)) [ Q(7)}-

5)

(16)
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In [19], it has proved that the data and pilot power allocation
implemented in each time-slot to minimizing the Lyapunov drift
can always pushed towards a lower queue length (i.e. all the data
queues’ stability can be maintained). Although greedily mini-
mizing queue length ensures the queue stability constraints (9)
can be satisfied, but it may cause the objective of problem is de-
viated. In order to totally solve problem P2, instead of greedily
minimizing the Lyapunov drift only, drift-plus-penalty method
is employed to minimize the drift-plus-penalty expression [20],
which is defined as following.

- VﬁzE {S,(r)

where V' is a nonnegative control parameter characterizing the
tradeoff between the system throughput and delay. A greater
value of V' indicates a higher priority allocation to optimize ob-
jective of problem P2 at the expense of greater queue lengths,
and vice versa. The upper bound of drift-plus-penalty term is
given in the following lemma.

Lemma 1: In every time-slot 7, for all possible values of
Q(7) and V, as well as any pilot and data transmission power
allocation, the upper bound of “drift-plus-penalty" is determined
by

I a7)

AMQ(T)) -

VE{Z&(r) | Q(T)}

M
<C;—-E {Z(Qi(T) +V)Si(7) — Qi(1)Ai(T) | Q(T)} )

i=1
(18)

where (' is a positive constant that satisfies the following in-
equality

C1 > ]E{ZS

Proof: See Appendix B.

Based on the design principle Lyapnov optimization [19],
[20], the stochastic optimization problem can be solved by min-
imizing the upper bound of its “drift-plus-penalty" term subject
to the same constrains except the queue stability ones. There-
fore, the design goal of joint pilot and data power allocation
strategy is transformed to adaptively minimizing the right hand
side (RHS) of (18) in each time-slot given Q(7) subject to con-
straints (10)—(12). We can remove the Q;(7)A;(7) term from
the RHS of (18) since Q;(7) and A;(7) are observable in each
time slot. Furthermore, the expectation operation can be also re-
moved because minimizing f(7) ensures that E{ f(7)|Q(7)} is
minimized based on the principle of opportunistically minimiz-
ing an expectation [19]. Thus, problem P2 can be reformulated
as:

(7)1 Q(r )} (19)

P3: max Z Z Qi(r (7') (20
Pi(7), P”(T) i=1jeq;
s.t. (10), (11), (12).
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Hereto, by utilizing Lyapunov optimization technology, prob-
lem P2 is transformed into a series of optimization problems
P3, each of which is solved in each time-slot.

C. Pilot and Data Power Allocation Algorithm

In this subsection, an efficient pilot and data transmission
power allocation algorithm is designed to solve the transformed
instantaneous optimization problem P3. It is proved in Ap-
pendix C, R;;(7) is a jointly concave function of P;(7) and
P;;(7), based on which the objective function of problem P3 is
also concave from the composition rule that preserves concavity
[21]. Furthermore, the constraints (10)—(12) are linear. Thus,
P3 is a convex optimization problem. To solve this convex op-
timization problem, we first define the Lagrangian function for
problem P3 as

J(P.(r), P, Z > (@ Rij(7)
i=1jeQ;
— ,LLZ Z PL‘]‘(T) - ,UPt + Hpmu;m
i=1j5€Q;

@1

where (4 is the Lagrange multiplier for constraint (10). Then the
dual problem is formulated as

i J(P,(7), Pii(7), ).
W0 Py (1)20. Py ()20 (Be(m), Py (7))

(22)

The difference between the optimal objective of problem P3
and that of its dual problem (22) is referred as the duality gap.
According to the convex optimization theory [21], the duality
gap reduces to zero at the optimum if problem P3 is convex.
Hence, problem P3 can be equivalently transformed into the
dual problem (22).

The optimal solution of dual problem (22) can be found by
optimizing variables P,(7), P;;(7) and p alternately. First, fixed
Lagrange multiplier 4 and pilot power P;(7), we derive optimal
data power P*( ) (shown in (23)) by using standard convex
optimization technique. Next, with the solution and the fixed
Lagrange multiplier x of the first step, the optimal P;"(7) is ob-

tained to maximize the Lagrange function J(P,(7), P;;(T), 1t).
0J (Pe(7),Pf;(1),1)
P ()
lot power P;(t) = 0; if %ﬁw |P,(r)=Pas> 0,
P (1) = Ppaz; otherwise, the P;(7) is found by solving
%ﬁ)(”” — 0, i.e., (24), with the bisection method. Fi-
nally, the Lagrange multiplier y is updated by using subgradient
method, i.e.,

Specifically, if |P.(r)=0< 0, the optimal pi-

M i
'u(;ngl) = ‘u(n) —0 | Praz — Z Z P;; (T) a Pt*(T) ’
i=1j€9Q;
(25)

where 4 is the positive step size and & is the iteration index. The
iteration procedure will not be stopped until the results converge.
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Zij(T) S 07

0,
= P (1)[Bono(Li+1)+a;;(7)] ;i (T)
{ 2([]Li0+1)0¢ij(7') ’ <_1 + \/1 +dzy (T)(Li +1) [BONO(Lz‘Jrjl)JrCYz‘j(7')]2

) , otherwise;

where z;;(7) = [v35(7)| BO(Q;ET) +V)logye No, a55(7) = No(Li + 1) + |v35(7)|*Pe (7).
(23)
% Z (Qi(7) + V) Bol|vaij(7)[* logy e (Li + 1)(P}(7))? _
= S5, P P(T)|vig ()2 + [(Li + D) P5(7) + Pu(7)INo (Li + 1) P5(7) + Bi(7)
(24)

Based on all above discussion, the algorithm DPDPA is outlined
in Algorithm 1.

Given a time-slot, the computational complexity of Algo-
rithm 1 is mainly dominated by the iterative process designed
to achieve the global optimum of P3. In each iteration, the opti-
mal data transmit power P;;(7) is determined according to (23)
and pilot transmission power P;(7) is obtained by the bisection
method. The computational complexity of the bisection method
is O ([logy(1/€)]), where ¢ is the required relative accuracy,
and [z] represents the smallest integer bigger than or equal to
z. Furthermore, the subgradient method converges to the de-
sired state after O(1/£2), where ¢ is the maximum tolerance
deviation from the optimal value p*. Therefore the total com-

plexity of Algorithm 1 is O (%&U/E)) in each time-slot.

IV. PERFORMANCE ANALYSIS

In this section, we mathematically analyze the performance
of the proposed DPDPA. A necessary and practical bounded-
ness assumption is given first, followed by discussing the per-
formance bounds of DPDPA.

With any pilot and data power allocation police, the total data
transmission rate ZZM S;(7) is assumed to guarantee the follow-
ing bound:

tot >

(26)

M .
Z si(T)]

where S and S7¢% are nonnegative constant. The assump-
tion is very reasonable, since departure rate is bounded from
above and below with limited resource in realistic systems [22].
With the help of the assumption (26) and Lemma 1, the per-
formance of our proposed DPDPA is revealed in the following
theorem.

Theorem 1: If X is strictly interior to the network capacity
region A ! and E{L(Q(0))} < oo, the proposed DPDPA with

I Define the network capacity region A as all the set of data arrival rate that can

Algorithm 1 Dynamic pilot and data power allocation algorithm
(DPDPA)
1:  During each time slot 7, the BS observes the current queue

state Q;(7), and performs the following steps:
2: Initialization:

k=0, ), P (1) and P (7);
3. repeat
4: Get the optimal data power allocation

for each user i
Calculate the optimal data power allocation P} (7)

according to (23) by replaced p with ;%) Pt( )
with P (7);
(k+1)
Set P (1)
end for

5: Get the optimal pilot power allocation
OJ (P (1),Pa(T
if S |y (ry=0< 0
Pr(r)=0;
f aJ(Pf

= P;}(Tﬁ

elsei Pd(T)) |p,
Py (7-) = Pma;m
else
Solve the (24), where P} (7)
p = %), by using the bisection method;
end
Set PV (7) = Pr(r);
6: Update Lagrangian multiplier ;o according to (25);
7: Setk =k +1;
8
9

)=Prnas > 0
= P (1) and

)

until Convergence;
return P} () and P;(7).

any V' > 0 provides the following performance:
(a) All queues are stable in BS.
(b) The time-averaged data rate of the system is lower

be stably supported by the network, considering all possible pilot and data power
allocation decisions. In other words, there at lest exists a policy that stabilizes
the network under this arrival rate [23].
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bounded by
N . c,
Stot > Sfﬂ -7 27
(c) The performance of the queues satisfies
T—1 M N ot
. C1 + V(SI5® — Sigr)
Jim > Y E{Qi(n)} < ﬁ (28)

7=0 =1

Here, S'fftt represents the maximum time-averaged rate incurred
over all possible pilot and data power control decisions for solv-
ing problem P2.

Proof: See Appendix D.

Since the average delay is proportional to the average queue
length from Little’s Theorem [24], we can depict the average
delay by the average queue length. The bound of average queue
length increases with V' according to (28). Meanwhile, from
(27), if V is sufficiently large, which results in the arbitrarily
small Cy /V, Siot arbitrarily approaches ng}t. As above analy-
sis, it reveals that an increasing V' results in an improvement for
S’tot and as well an increasing delay.

V. SIMULATION RESULTS

In this section, simulation results are provided to illustrate the
performance of the proposed DPDPA algorithm. We consider an
example of the network consists of one BS, three users, three pi-
lot subcarriers, and six data subcarriers that are equally allocated
to all users. The number of resolvable paths for user i, L;, is set
to 2. The data arrival amount to the queue ¢ during each time-
slot follows the poisson distribution with the mean \;, which
is assumed to the same for all users. For simplicity, the noise
power is normalized to one. We set P,,,, = 100 and 7" = 2000
time-slots, that is, each point of the following curves is averaged
over 2000 runs.

Fig. 2 shows the queue length against the time-solt with
V' = 40. As it can be observed from Fig. 2, the queue length of
each user is determinately upper bounded by 100. This demon-
strates all queues are stabilized in the system, which matches the
theoretical analysis in Theorem 1(a).

Fig. 3 evaluates the impact of control parameter V' on aver-
aged data rate and queue length. In Fig. 3, with an increasing V,
we observe that the average data rate and average queue length
are slightly increased. This is due to the fact that an increasing
V' leads to an ever-increasing concern on maximizing objective
instead of minimizing queue length. Therefore, the average data
rate and queue length increase with the growth of V. Based on
above analysis, by setting appropriate control parameter V, the
network can operate in a predefined state. Specifically, if the
system pursues a high time-averaged data rate, a large V' is re-
quired. On the contrary, if the system prefers to a stricter delay,
then a smaller V' is desired.

Fig. 4 shows the network performance of DPDPA with respect
to different \;. We observe that average data rate and queue
length grow with an increasing average arrival data rate \;. The
reason for this phenomena is that a larger A; requires higher data
rate to ensure a finite queue length, i.e., guarantee queue stabil-
ity. Additionally, it is obvious that once the arrival data rate \;
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Fig. 3. Network performance of DPDPA vs. V' with \; = 4.

varies, then the time data rate changes as well, which means the
DPDPA is adapted to the average arrival data rate \;.

Next, we evaluate the performance of the proposed algorithm
by comparing it with the following algorithms: 1) A police
in [26] that maximizes the time-averaged data rate with per-
fect CSI and queue stability constraint (labelled “perfect CSI");
2) a police that maximizes the time-averaged data rate with
fixed pilot power P,.,,; and queue stability constraint (labelled
“P; = P.ont"); as shown in Fig. 5, the algorithm “perfect CSI"
achieves the best performance among the three policies, i.e. the
highest average data rate and the shortest queue length. This
is because no power is required to transmit pilot symbols for
CSI estimation. Additionally, whatever the value of P, is set in
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Fig. 4. Network performance of DPDPA vs. A\; with V' = 0.

Algorithm 2 The power allocation algorithm for problem P1

1: 1: During each time slot 7, the BS observes the current
queue state QQ;(7), and performs power allocation based on:

P4:

max
Py(7),Pa(r

M
U2 = DD (Qi(m) + V)Rii(7) (29)

s.t. (10), (11), 212).

2:  2: Update Q;(7) according to (4).

algorithm “P; = P,,,:", our proposed algorithm has much bet-
ter performance, i.e., higher average data rate and shorter queue
length, since the algorithm “P, = P,,,;" only optimize data
transmit power without taking into account channel estimation
cost P;.

Our algorithm is proposed based on how to solve problem
P2 which is an approximation of the original problem P1.
To demonstrate the rationality of the approximate transform
method, we compare the performance of Algorithm 1 with that
of the algorithm proposed for P1. Similarly, according to the
formulation of problem P1, the Lyapunov optimization method
is employed to tackle it. The solving process for P1 is described
in Algorithm 2.

Due to the non-concavity of objective function (29), problem
P4 falls into the scope of nonconvex programming, whose so-
lution is difficult to find. We employ exhaustive searching to
obtain optimal power allocation for problem P4. Fig. 6 shows
the average data rate versus V under Algorithm 1 and Algorithm
2. The curve with the square marks represents the performance
of Algorithm 1 while the curve with the star marks denotes the
performance of Algorithm 2. It is obvious that the performance
obtained by Algorithm 1 almost overlaps with that obtained by
Algorithm 2.
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Fig. 5. Network performance comparison with A\; = 4.

VI. CONCLUSIONS

In this paper, we have investigated the dynamic power allo-
cation problem in downlink OFDMA networks while consider-
ing the estimation cost, the time varying channel, and the queue
stability constraints of all users. The DPDPA has been devel-
oped to solve the problem by adopting approximate transfor-
mation, Lyapunov optimization and Lagrange dual formulation.
The bounds of its performances, in terms of time-averaged data
transmission rate and queue length, were derived, which are in-
creasing functions of the control parameter V.

APPENDIX A
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Fig. 6. Verification for the performance of approximate transform method with
Ai =4

PROOF OF CONCAVITY OF R;,(7)

Proof: The second-order partial derivative of R;;(7) with re-
spect to P;;(7) is

d*Ri;(r) _ logye  dni;() dmi(7)
dP;(r)2 (14 mi(7))? APy (r) dPy(7)
log, e d217ij(7)
Ty (7) 4By () G0
where
1ij () (31
_ vi(0)? Pi(7)P;(7)
N() PZJ(T)(Ll'F].) +(Ll+1)No +Pt(’7'),
dni; (7)
dPij(T) (32)
_ |vij (T)]? P.(7)[(Li + 1)No + Pi(7)]
No  [Pi(7)(Li + 1)+ (L; + 1)No + Pi(7)]?’
and
d®ni; (1)
dPij (’7’)2 (33)

_ —20vi;(7)|> (Li + 1)Py(7)[(Ls + 1) No + Py(7)]
No [Py (T)(Li +1) + (Li + 1)No + P(7)]3

We can easily derive i PleT()Tz)

< 0, which indicates that R;;(T)

is a concave function with respect to P;;(7). Similarly, we have
d?Ri; (1)
dP(7)2
Additionally, the Hessian matrix of R;;(7) is expressed as

< 0. Therefore R;;(7) is a concave function of P;(7).

TR A
VERi;(r) = dzéf;()f) 3(71%,1(?)( K G4
dP;;(T)dP:(T) dP;;(1)?
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It is no difficult to validate that V2R;;(7) is not always negative
semi-definite for any P;(7) > 0 and P;;(7) > 0. Then we
prove that R;;(7) is not a concave function with both P, (7) and

Pij(T).

APPENDIX B
PROOF OF LEMMA 1

From (4) and (15), we get

1 X 2
L(Q(T+1)) §Z{max = 5;(7),0] +Ai(7’)}
1 o i=1 \
<35 {Q@ ) + 320 + 420) + 200 [Al) - 51
- (35)
Substitute (35) into (16), A(Q(7)) is expressed as
1 &,
AQ(n)) <3E {2[52( )+ A (T)]Q(r }
v
+E{ZQ2’(7)[A (r) = (T)HQ(T)}
y M
<C —IE{Z Qi(7)[5i(7) — T)]|Q(T)},
1=1 (36)

where (' is a positive constant that satisfies the following in-

equality
()21 Q(r )}

Subtracting VE {Zfﬁl Si(7) | Q(T)} from both sides of in-
equality (36), we obtain Lemmal.

C1 > ]E{ZS

APPENDIXC
PROOF OF CONCAVITY OF Ry ;(7)

The Hessian matrix of R” (7) is given by

d*Rij(r) d*Ri; (1)
> dP,(1)2 dP;(7)dP;; (1
ViR = | iy e 37)
dP;;(T)dP:(T) dP;;(71)?

It is easy to prove that V2R; ;(7) is a negative semidefinite ma-

trix. Therefore, R;;(7) is a concave function with respect to
Pt(T) and P”(’T)

APPENDIX D
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PROOF OF THEOREM 1

According to (18), for the proposed dynamic power allocation
scheme, we have

M
AQ(r) = VESL D Y Ry(P(r)

i=1jeQ;

M
<CL—=VELY > Ry(Pr(7)

P(1) 1 Q(7)

P5(1) 1 Q(7)

i=1j€9Q;
~E Z > QiR (P (), P(r) — Ai(7)] | Q(7)
i=1j€Q;
M .
<C -VESY Y Riy(Pi(r), (7)) | Q(7)
i=1j€Q;
~E ZZ@ P/(1), P()) — A«(n)] | Q(7) ¢,
i=1j€Q;
(38)

where the power allocation decisions P;(7) and P/;(7) are im-
plemented with any stationary randomized policy. The second
inequality sign of (38) holds based on the fact that the proposed
power allocation scheme is optimal to minimize the RHS of the
bounds in (18) compared with any other power control policies.

According to the stochastic network optimization theory [19],
[25], if A is strictly interior to the capacity region A, then there
exists the positive 9 satisfying A + 9 € A and a stationary ran-
domized policy satisfying

> Ri(PU(r), Pl())| = Xi + 0. (39)
JEQ;
From (39) and (38) can be further simplified as
M .
AQ(r) = VES Y Y Ri(Pi(7), P5(7) | Q(r)
i=1j€Q,
M .
<C—VESY N Riy(P/(7), Pi(r) | Q(7)
i=1j€Q;
M
=Y VE{Qi(7)} (40)
i=1

(a) From (40), it is easily proved that there exist some finite
positive constants C' satisfying

AQ(r)) < C.

Substituting (15) and (16) into above inequality and summing
over 7 € {0,1,---,T — 1}, we obtain

(41)

E{Qi(T)*} < 2TC + 2E{L(Q(0))}. (42)

From the variance formula D{Qi(T)} - E{Q?(T)} .
E2{Q;(T)}, we have E{Q3(T)} > E2{Q(T)}. since
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D{Q;(T)} > 0. Thus

E{Qi(T)} < v2TC + 2E{L(Q(0))}.

Dividing the inequality (43) by 7" and taking a limit as T" — oo,
we have

(43)

lim E{Q:(T)}

T>eo T @9

=0,
with the assumption E{L(Q
Q;(7) are stable in BS.

(b) Let Stot represent the maximum time-average rate in-
curred over all possible power control decisions for solving
problem P2. There exists stationary randomized policy that ob-
tains S°%. Thus, the inequality (40) can be rewritten as

M
AQ(r) = VEQ Y > Rij(Pi(r)

i=1j€Q;

(0)) < oco. Therefore, all queues

Pi(1) 1 Q(7)

M
< C1— VS = IE{Qi()}. (45)

i=1

By substituting (16) into (45) and summing over 7 €

{0,1,---,T — 1}, we obtain
E{L( (1))} — E{L(Q(0))}
v z B1S° Y Ry (B P | Q)
i=1j€Q;
T—1 M
<TC, =TVS =Y > 9B{Qi(r)} (46)
7=0 i=1

Since Q;(7) > 0, the above inequality is further simplified as

v Z E Z > Ri(Pr(r), Py(7) | Q(7)
=1 j€Q;
> TV S — TCy — E{L(Q(0))}. (47)

Dividing the inequality (47) by V'T" and taking a limit as T —
00, we have

Stot > (48)

(c) From inequality (46), dividing by ¥, rearranging terms
and using the fact that Q;(7) > 0, we obtain

T—-1 M

_E{LQO)) GV

7;;]“62 =T 5 i
ZE ZZR (P (), P5(m) | Q(7) p . (49)

i=1j€eQ;

Based on the assumption (26) and E{L(Q(0)) < oo, and taking
a limit as 7' — oo for above inequality, we have

T—-1 M Smaz

lim = > E{Qi(m) < G+ W 7

gopt
Stor)

. (50)
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